The Dirichlet problem for Monge-Ampère equations in non-convex domains and spacelike hypersurfaces of constant Gauss curvature
HTML articles powered by AMS MathViewer
- by Bo Guan
- Trans. Amer. Math. Soc. 350 (1998), 4955-4971
- DOI: https://doi.org/10.1090/S0002-9947-98-02079-0
- PDF | Request permission
Abstract:
In this paper we extend the well known results on the existence and regularity of solutions of the Dirichlet problem for Monge-Ampère equations in a strictly convex domain to an arbitrary smooth bounded domain in $\mathbf {R}^n$ as well as in a general Riemannian manifold. We prove for the nondegenerate case that a sufficient (and necessary) condition for the classical solvability is the existence of a subsolution. For the totally degenerate case we show that the solution is in $C^{1,1} (\overline {\Omega })$ if the given boundary data extends to a locally strictly convex $C^2$ function on $\overline {\Omega }$. As an application we prove some existence results for spacelike hypersurfaces of constant Gauss-Kronecker curvature in Minkowski space spanning a prescribed boundary.References
- A. Atallah and C. Zuily, Monge-Ampère equations relative to a Riemannian metric, Trans. Amer. Math. Soc. 349 (1997), no. 10, 3989–4006. MR 1433109, DOI 10.1090/S0002-9947-97-01833-3
- Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859, DOI 10.1007/978-1-4612-5734-9
- Robert Bartnik and Leon Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys. 87 (1982/83), no. 1, 131–152. MR 680653
- L. A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. of Math. (2) 131 (1990), no. 1, 129–134. MR 1038359, DOI 10.2307/1971509
- L. Caffarelli, J. J. Kohn, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math. 38 (1985), no. 2, 209–252. MR 780073, DOI 10.1002/cpa.3160380206
- L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Comm. Pure Appl. Math. 37 (1984), no. 3, 369–402. MR 739925, DOI 10.1002/cpa.3160370306
- Li Shang Jiang and Ben Yan Jiang, Periodic solutions of a quasilinear parabolic equation, Chinese Ann. Math. Ser. A 7 (1986), no. 3, 338–346 (Chinese). An English summary appears in Chinese Ann. Math. Ser. B 7 (1986), no. 3, 400. MR 864899
- Shiu Yuen Cheng and Shing Tung Yau, On the regularity of the solution of the $n$-dimensional Minkowski problem, Comm. Pure Appl. Math. 29 (1976), no. 5, 495–516. MR 423267, DOI 10.1002/cpa.3160290504
- Shiu Yuen Cheng and Shing Tung Yau, Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math. (2) 104 (1976), no. 3, 407–419. MR 431061, DOI 10.2307/1970963
- Hyeong In Choi and Andrejs Treibergs, Gauss maps of spacelike constant mean curvature hypersurfaces of Minkowski space, J. Differential Geom. 32 (1990), no. 3, 775–817. MR 1078162
- Lawrence C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), no. 3, 333–363. MR 649348, DOI 10.1002/cpa.3160350303
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Bo Guan, On the existence and regularity of hypersurfaces of prescribed Gauss curvature with boundary, Indiana Univ. Math. J. 44 (1995), no. 1, 221–241. MR 1336439, DOI 10.1512/iumj.1995.44.1985
- Bo Guan and Yan Yan Li, Monge-Ampère equations on Riemannian manifolds, J. Differential Equations 132 (1996), no. 1, 126–139. MR 1418503, DOI 10.1006/jdeq.1996.0174
- Bo Guan and Joel Spruck, Boundary-value problems on $S^n$ for surfaces of constant Gauss curvature, Ann. of Math. (2) 138 (1993), no. 3, 601–624. MR 1247995, DOI 10.2307/2946558
- David Hoffman, Harold Rosenberg, and Joel Spruck, Boundary value problems for surfaces of constant Gauss curvature, Comm. Pure Appl. Math. 45 (1992), no. 8, 1051–1062. MR 1168119, DOI 10.1002/cpa.3160450807
- N. M. Ivochkina, Classical solvability of the Dirichlet problem for the Monge-Ampère equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 131 (1983), 72–79 (Russian, with English summary). Questions in quantum field theory and statistical physics, 4. MR 718679
- N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 1, 75–108 (Russian). MR 688919
- N. V. Krylov, Degenerate nonlinear elliptic equations, Mat. Sb. (N.S.) 120(162) (1983), no. 3, 311–330, 448 (Russian). MR 691980
- N. V. Krylov, Lectures on fully nonlinear second order elliptic equations, Vorlesungsreihe No. 29, Rheinische Friedrich-Wilhelms-Universitat, Sonderforschchungsbereich 256, Bonn, 1993.
- N. V. Krylov, A theorem on degenerate elliptic Bellman equations in bounded domains, Differential Integral Equations 8 (1995), no. 5, 961–980. MR 1325541
- N. V. Krylov, Fully nonlinear second order elliptic equations: recent development, preprint.
- Harold Rosenberg and Joel Spruck, On the existence of convex hypersurfaces of constant Gauss curvature in hyperbolic space, J. Differential Geom. 40 (1994), no. 2, 379–409. MR 1293658
- Neil S. Trudinger, Fully nonlinear, uniformly elliptic equations under natural structure conditions, Trans. Amer. Math. Soc. 278 (1983), no. 2, 751–769. MR 701522, DOI 10.1090/S0002-9947-1983-0701522-0
- Neil S. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math. 175 (1995), no. 2, 151–164. MR 1368245, DOI 10.1007/BF02393303
- Neil S. Trudinger and John I. E. Urbas, On second derivative estimates for equations of Monge-Ampère type, Bull. Austral. Math. Soc. 30 (1984), no. 3, 321–334. MR 766792, DOI 10.1017/S0004972700002069
Bibliographic Information
- Bo Guan
- Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
- Address at time of publication: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996
- Email: guan@math.utk.edu
- Received by editor(s): August 11, 1995
- Received by editor(s) in revised form: November 11, 1996
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 4955-4971
- MSC (1991): Primary 35J65, 35J70; Secondary 58G20
- DOI: https://doi.org/10.1090/S0002-9947-98-02079-0
- MathSciNet review: 1451602