## A generalized Dedekind-Mertens lemma and its converse

HTML articles powered by AMS MathViewer

- by Alberto Corso, William Heinzer and Craig Huneke PDF
- Trans. Amer. Math. Soc.
**350**(1998), 5095-5109 Request permission

## Abstract:

We study content ideals of polynomials and their behavior under multiplication. We give a generalization of the Lemma of Dedekind–Mertens and prove the converse under suitable dimensionality restrictions.## References

- Jimmy T. Arnold and Robert Gilmer,
*On the contents of polynomials*, Proc. Amer. Math. Soc.**24**(1970), 556–562. MR**252360**, DOI 10.1090/S0002-9939-1970-0252360-3 - D. D. Anderson and B. G. Kang,
*Content formulas for polynomials and power series and complete integral closure*, J. Algebra**181**(1996), no. 1, 82–94. MR**1382027**, DOI 10.1006/jabr.1996.0110 - Bruns, W., Guerrieri, A.,
*The Dedekind–Mertens formula and determinantal rings*, to appear, Proc. Amer. Math. Soc. - Winfried Bruns and Jürgen Herzog,
*Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR**1251956** - Corso, A., Vasconcelos, W.V, Villarreal, R.,
*Generic Gaussian ideals*, J. Pure Appl. Algebra**125**(1998), 117–127. - Harold M. Edwards,
*Divisor theory*, Birkhäuser Boston, Inc., Boston, MA, 1990. MR**1200892**, DOI 10.1007/978-0-8176-4977-7 - Robert Gilmer, Anne Grams, and Tom Parker,
*Zero divisors in power series rings*, J. Reine Angew. Math.**278(279)**(1975), 145–164. MR**387274** - Glaz, S., Vasconcelos, W.V.,
*The content of Gaussian polynomials*, to appear, J. Algebra. - William Heinzer and Craig Huneke,
*Gaussian polynomials and content ideals*, Proc. Amer. Math. Soc.**125**(1997), no. 3, 739–745. MR**1401742**, DOI 10.1090/S0002-9939-97-03921-X - Heinzer, W., Huneke, C.,
*The Dedekind–Mertens lemma and the contents of polynomials*, Proc. Amer. Math. Soc.**126**(1998), 1305–1309. - Melvin Hochster,
*Cyclic purity versus purity in excellent Noetherian rings*, Trans. Amer. Math. Soc.**231**(1977), no. 2, 463–488. MR**463152**, DOI 10.1090/S0002-9947-1977-0463152-5 - Hideyuki Matsumura,
*Commutative ring theory*, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR**879273** - D. G. Northcott,
*A generalization of a theorem on the content of polynomials*, Proc. Cambridge Philos. Soc.**55**(1959), 282–288. MR**110732**, DOI 10.1017/s030500410003406x - D. Rees,
*A note on analytically unramified local rings*, J. London Math. Soc.**36**(1961), 24–28. MR**126465**, DOI 10.1112/jlms/s1-36.1.24 - D. Rees,
*A note on asymptotically unmixed ideals*, Math. Proc. Cambridge Philos. Soc.**98**(1985), no. 1, 33–35. MR**789716**, DOI 10.1017/S0305004100063210 - Oscar Zariski and Pierre Samuel,
*Commutative algebra. Vol. II*, Graduate Texts in Mathematics, Vol. 29, Springer-Verlag, New York-Heidelberg, 1975. Reprint of the 1960 edition. MR**0389876**

## Additional Information

**Alberto Corso**- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47906
- Address at time of publication: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
- MR Author ID: 348795
- Email: corso@math.msu.edu
**William Heinzer**- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47906
- Email: heinzer@math.purdue.edu
**Craig Huneke**- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47906
- MR Author ID: 89875
- Email: huneke@math.purdue.edu
- Received by editor(s): February 10, 1997
- Additional Notes: The authors gratefully acknowledge partial support from the NSF
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 5095-5109 - MSC (1991): Primary 13A15; Secondary 13B25, 13G05, 13H10
- DOI: https://doi.org/10.1090/S0002-9947-98-02176-X
- MathSciNet review: 1473435

Dedicated: To Wolmer V. Vasconcelos on the occasion of his sixtieth birthday