## Two dimensional elliptic equation with critical nonlinear growth

HTML articles powered by AMS MathViewer

- by Takayoshi Ogawa and Takashi Suzuki PDF
- Trans. Amer. Math. Soc.
**350**(1998), 4897-4918 Request permission

## Abstract:

We study the asymptotic behavior of solutions to a semilinear elliptic equation associated with the critical nonlinear growth in two dimensions. \begin{equation*}\tag {1.1} \begin {cases} -\Delta u= \lambda ue^{u^2}, u>0 & \text {in $\Omega $}, \\ u=0 & \text {on $\partial \Omega $}, \end{cases} \end{equation*} where $\Omega$ is a unit disk in $\mathbb {R}^2$ and $\lambda$ denotes a positive parameter. We show that for a radially symmetric solution of (1.1) satisfies \begin{equation*} \int _{D}\left \vert \nabla u\right \vert ^{2}dx\rightarrow 4\pi ,\quad \lambda \searrow 0. \end{equation*} Moreover, by using the Pohozaev identity to the rescaled equation, we show that for any finite energy radially symmetric solutions to (1.1), there is a rescaled asymptotics such as \begin{equation*} u_m^2(\gamma _m x)-u_m^2 (\gamma _m)\to 2\log \frac {2}{1+|x|^2} \quad \text {as }\lambda _m\searrow 0 \end{equation*} locally uniformly in $x\in \mathbb R^2$. We also show some extensions of the above results for general two dimensional domains.## References

- Adimurthi,
*Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**17**(1990), no. 3, 393–413. MR**1079983** - Haïm Brezis,
*Analyse fonctionnelle*, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). Théorie et applications. [Theory and applications]. MR**697382** - Haïm Brezis and Frank Merle,
*Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x)e^u$ in two dimensions*, Comm. Partial Differential Equations**16**(1991), no. 8-9, 1223–1253. MR**1132783**, DOI 10.1080/03605309108820797 - Lennart Carleson and Sun-Yung A. Chang,
*On the existence of an extremal function for an inequality of J. Moser*, Bull. Sci. Math. (2)**110**(1986), no. 2, 113–127 (English, with French summary). MR**878016** - Wen Xiong Chen and Congming Li,
*Classification of solutions of some nonlinear elliptic equations*, Duke Math. J.**63**(1991), no. 3, 615–622. MR**1121147**, DOI 10.1215/S0012-7094-91-06325-8 - D. G. de Figueiredo, P.-L. Lions, and R. D. Nussbaum,
*A priori estimates and existence of positive solutions of semilinear elliptic equations*, J. Math. Pures Appl. (9)**61**(1982), no. 1, 41–63. MR**664341** - Martin Flucher,
*Extremal functions for the Trudinger-Moser inequality in $2$ dimensions*, Comment. Math. Helv.**67**(1992), no. 3, 471–497. MR**1171306**, DOI 10.1007/BF02566514 - B. Gidas, Wei Ming Ni, and L. Nirenberg,
*Symmetry and related properties via the maximum principle*, Comm. Math. Phys.**68**(1979), no. 3, 209–243. MR**544879** - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190**, DOI 10.1007/978-3-642-61798-0 - Tatsuo Itoh,
*Blowing-up behavior for solutions of nonlinear elliptic equations*, Spectral and scattering theory and applications, Adv. Stud. Pure Math., vol. 23, Math. Soc. Japan, Tokyo, 1994, pp. 177–186. MR**1275401**, DOI 10.2969/aspm/02310177 - P.-L. Lions,
*The concentration-compactness principle in the calculus of variations. The limit case. I*, Rev. Mat. Iberoamericana**1**(1985), no. 1, 145–201. MR**834360**, DOI 10.4171/RMI/6 - J. B. McLeod and L. A. Peletier,
*Observations on Moser’s inequality*, Arch. Rational Mech. Anal.**106**(1989), no. 3, 261–285. MR**981664**, DOI 10.1007/BF00281216 - J. Moser,
*A sharp form of an inequality by N. Trudinger*, Indiana Univ. Math. J.**20**(1970/71), 1077–1092. MR**301504**, DOI 10.1512/iumj.1971.20.20101 - Zeev Nehari,
*On a class of nonlinear second-order differential equations*, Trans. Amer. Math. Soc.**95**(1960), 101–123. MR**111898**, DOI 10.1090/S0002-9947-1960-0111898-8 - Takayoshi Ogawa,
*A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations*, Nonlinear Anal.**14**(1990), no. 9, 765–769. MR**1049119**, DOI 10.1016/0362-546X(90)90104-O - Takayoshi Ogawa and Takashi Suzuki,
*Trudinger’s inequality and related nonlinear elliptic equations in two-dimension*, Spectral and scattering theory and applications, Adv. Stud. Pure Math., vol. 23, Math. Soc. Japan, Tokyo, 1994, pp. 283–294. MR**1275410**, DOI 10.2969/aspm/02310283 - T. Ogawa and T. Suzuki,
*Nonlinear elliptic equations with critical growth related to the Trudinger inequality,*Asymptotic Analysis,**12**(1996), 25–40. - Takayoshi Ogawa and Takashi Suzuki,
*Microscopic asymptotics for solutions of some semilinear elliptic equations*, Nagoya Math. J.**138**(1995), 33–50. MR**1339942**, DOI 10.1017/S0027763000005171 - L. E. Payne, René Sperb, and Ivar Stakgold,
*On Hopf type maximum principles for convex domains*, Nonlinear Anal.**1**(1976/77), no. 5, 547–559. MR**517932**, DOI 10.1016/0362-546X(77)90016-5 - S. I. Pohožaev,
*On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$*, Dokl. Akad. Nauk SSSR**165**(1965), 36–39 (Russian). MR**0192184** - Mei-Chi Shaw,
*Eigenfunctions of the nonlinear equation $\Delta u+\nu f(x,u)=0$ in $\textbf {R}^2$*, Pacific J. Math.**129**(1987), no. 2, 349–356. MR**909036** - René P. Sperb,
*Maximum principles and their applications*, Mathematics in Science and Engineering, vol. 157, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**615561** - Michael Struwe,
*Critical points of embeddings of $H^{1,n}_0$ into Orlicz spaces*, Ann. Inst. H. Poincaré Anal. Non Linéaire**5**(1988), no. 5, 425–464 (English, with French summary). MR**970849** - Neil S. Trudinger,
*On imbeddings into Orlicz spaces and some applications*, J. Math. Mech.**17**(1967), 473–483. MR**0216286**, DOI 10.1512/iumj.1968.17.17028

## Additional Information

**Takayoshi Ogawa**- Affiliation: Department of Mathematics, University of California at Santa Barbara, Santa Barbara, California 93106
- Address at time of publication: Graduate School of Mathematics, Kyushu University 36, Fukuoka, 812-8581, Japan
- MR Author ID: 289654
- Email: ogawa@math.kyushu-u.ac.jp
**Takashi Suzuki**- Affiliation: Department of Mathematics, Osaka University, Toyonaka, Osaka 560, Japan
- MR Author ID: 199324
- Email: takashi@math.sci.osaka-u.ac.jp
- Received by editor(s): January 29, 1996
- Additional Notes: The first author is on long-term leave from the Graduate School of Polymathematics, Nagoya University, Nagoya 464-01 Japan.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 4897-4918 - MSC (1991): Primary 35J60, 35P30, 35J20
- DOI: https://doi.org/10.1090/S0002-9947-98-02269-7
- MathSciNet review: 1641254