Two dimensional elliptic equation with critical nonlinear growth
HTML articles powered by AMS MathViewer
- by Takayoshi Ogawa and Takashi Suzuki
- Trans. Amer. Math. Soc. 350 (1998), 4897-4918
- DOI: https://doi.org/10.1090/S0002-9947-98-02269-7
- PDF | Request permission
Abstract:
We study the asymptotic behavior of solutions to a semilinear elliptic equation associated with the critical nonlinear growth in two dimensions. \begin{equation*}\tag {1.1} \begin {cases} -\Delta u= \lambda ue^{u^2}, u>0 & \text {in $\Omega $}, \\ u=0 & \text {on $\partial \Omega $}, \end{cases} \end{equation*} where $\Omega$ is a unit disk in $\mathbb {R}^2$ and $\lambda$ denotes a positive parameter. We show that for a radially symmetric solution of (1.1) satisfies \begin{equation*} \int _{D}\left \vert \nabla u\right \vert ^{2}dx\rightarrow 4\pi ,\quad \lambda \searrow 0. \end{equation*} Moreover, by using the Pohozaev identity to the rescaled equation, we show that for any finite energy radially symmetric solutions to (1.1), there is a rescaled asymptotics such as \begin{equation*} u_m^2(\gamma _m x)-u_m^2 (\gamma _m)\to 2\log \frac {2}{1+|x|^2} \quad \text {as }\lambda _m\searrow 0 \end{equation*} locally uniformly in $x\in \mathbb R^2$. We also show some extensions of the above results for general two dimensional domains.References
- Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 3, 393–413. MR 1079983
- Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). Théorie et applications. [Theory and applications]. MR 697382
- Haïm Brezis and Frank Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x)e^u$ in two dimensions, Comm. Partial Differential Equations 16 (1991), no. 8-9, 1223–1253. MR 1132783, DOI 10.1080/03605309108820797
- Lennart Carleson and Sun-Yung A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. (2) 110 (1986), no. 2, 113–127 (English, with French summary). MR 878016
- Wen Xiong Chen and Congming Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), no. 3, 615–622. MR 1121147, DOI 10.1215/S0012-7094-91-06325-8
- D. G. de Figueiredo, P.-L. Lions, and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl. (9) 61 (1982), no. 1, 41–63. MR 664341
- Martin Flucher, Extremal functions for the Trudinger-Moser inequality in $2$ dimensions, Comment. Math. Helv. 67 (1992), no. 3, 471–497. MR 1171306, DOI 10.1007/BF02566514
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Tatsuo Itoh, Blowing-up behavior for solutions of nonlinear elliptic equations, Spectral and scattering theory and applications, Adv. Stud. Pure Math., vol. 23, Math. Soc. Japan, Tokyo, 1994, pp. 177–186. MR 1275401, DOI 10.2969/aspm/02310177
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201. MR 834360, DOI 10.4171/RMI/6
- J. B. McLeod and L. A. Peletier, Observations on Moser’s inequality, Arch. Rational Mech. Anal. 106 (1989), no. 3, 261–285. MR 981664, DOI 10.1007/BF00281216
- J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077–1092. MR 301504, DOI 10.1512/iumj.1971.20.20101
- Zeev Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101–123. MR 111898, DOI 10.1090/S0002-9947-1960-0111898-8
- Takayoshi Ogawa, A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations, Nonlinear Anal. 14 (1990), no. 9, 765–769. MR 1049119, DOI 10.1016/0362-546X(90)90104-O
- Takayoshi Ogawa and Takashi Suzuki, Trudinger’s inequality and related nonlinear elliptic equations in two-dimension, Spectral and scattering theory and applications, Adv. Stud. Pure Math., vol. 23, Math. Soc. Japan, Tokyo, 1994, pp. 283–294. MR 1275410, DOI 10.2969/aspm/02310283
- T. Ogawa and T. Suzuki, Nonlinear elliptic equations with critical growth related to the Trudinger inequality, Asymptotic Analysis, 12 (1996), 25–40.
- Takayoshi Ogawa and Takashi Suzuki, Microscopic asymptotics for solutions of some semilinear elliptic equations, Nagoya Math. J. 138 (1995), 33–50. MR 1339942, DOI 10.1017/S0027763000005171
- L. E. Payne, René Sperb, and Ivar Stakgold, On Hopf type maximum principles for convex domains, Nonlinear Anal. 1 (1976/77), no. 5, 547–559. MR 517932, DOI 10.1016/0362-546X(77)90016-5
- S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR 165 (1965), 36–39 (Russian). MR 0192184
- Mei-Chi Shaw, Eigenfunctions of the nonlinear equation $\Delta u+\nu f(x,u)=0$ in $\textbf {R}^2$, Pacific J. Math. 129 (1987), no. 2, 349–356. MR 909036
- René P. Sperb, Maximum principles and their applications, Mathematics in Science and Engineering, vol. 157, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 615561
- Michael Struwe, Critical points of embeddings of $H^{1,n}_0$ into Orlicz spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), no. 5, 425–464 (English, with French summary). MR 970849
- Neil S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. MR 0216286, DOI 10.1512/iumj.1968.17.17028
Bibliographic Information
- Takayoshi Ogawa
- Affiliation: Department of Mathematics, University of California at Santa Barbara, Santa Barbara, California 93106
- Address at time of publication: Graduate School of Mathematics, Kyushu University 36, Fukuoka, 812-8581, Japan
- MR Author ID: 289654
- Email: ogawa@math.kyushu-u.ac.jp
- Takashi Suzuki
- Affiliation: Department of Mathematics, Osaka University, Toyonaka, Osaka 560, Japan
- MR Author ID: 199324
- Email: takashi@math.sci.osaka-u.ac.jp
- Received by editor(s): January 29, 1996
- Additional Notes: The first author is on long-term leave from the Graduate School of Polymathematics, Nagoya University, Nagoya 464-01 Japan.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 4897-4918
- MSC (1991): Primary 35J60, 35P30, 35J20
- DOI: https://doi.org/10.1090/S0002-9947-98-02269-7
- MathSciNet review: 1641254