## The Stable Homotopy Types of Stunted Lens Spaces mod 4

HTML articles powered by AMS MathViewer

- by Huajian Yang PDF
- Trans. Amer. Math. Soc.
**350**(1998), 4775-4798 Request permission

## Abstract:

Let $L^{n+k}_n$ be the mod $4$ stunted lens space $L^{n+k}/L^{n-1}$. Let $\nu (m)$ denote the exponent of $2$ in $m$, and $\phi (k)$ the number of integers $j$ satisfying $j\equiv 0,1, 2, 4 (\operatorname {mod}8)$, and $0< j\leq k$. In this paper we complete the classification of the stable homotopy types of mod $4$ stunted lens spaces. The main result (Theorem 1.3 (i)) is that, under some appropriate conditions, $L^{n+k}_n$ and $L^{m+k}_m$ are stably equivalent iff $\nu (n-m)\geq \phi (k)+\delta$, where $\delta =-1, 0$ or $1$.## References

- J. F. Adams,
*Vector fields on spheres*, Ann. of Math. (2)**75**(1962), 603–632. MR**139178**, DOI 10.2307/1970213 - J. F. Adams,
*On the non-existence of elements of Hopf invariant one*, Ann. of Math. (2)**72**(1960), 20–104. MR**141119**, DOI 10.2307/1970147 - M. F. Atiyah,
*Thom complexes*, Proc. London Math. Soc. (3)**11**(1961), 291–310. MR**131880**, DOI 10.1112/plms/s3-11.1.291 - Donald M. Davis and Mark Mahowald,
*Classification of the stable homotopy types of stunted real projective spaces*, Pacific J. Math.**125**(1986), no. 2, 335–345. MR**863530** - Donald Davis,
*Generalized homology and the generalized vector field problem*, Quart. J. Math. Oxford Ser. (2)**25**(1974), 169–193. MR**356053**, DOI 10.1093/qmath/25.1.169 - Donald M. Davis and Mark Mahowald,
*Homotopy groups of some mapping telescopes*, Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 126–151. MR**921475** - Samuel Feder, Samuel Gitler, and Mark E. Mahowald,
*On the stable homotopy type of stunted projective spaces*, Bol. Soc. Mat. Mexicana (2)**22**(1977), no. 1, 1–5. MR**527670** - K. Fujii, T. Kobayashi, and M. Sugawara,
*Stable homotopy types of stunted lens spaces*, Mem. Fac. Sci. Kôchi Univ. Ser. A Math.**3**(1982), 21–27. MR**643923** - Jesus Gonzalez,
*Classification of the stable homotopy types of stunted lens spaces mod $p$*, to appear. - Dale Husemoller,
*Fibre bundles*, 2nd ed., Graduate Texts in Mathematics, No. 20, Springer-Verlag, New York-Heidelberg, 1975. MR**0370578** - Teiichi Kobayashi and Masahiro Sugawara,
*On stable homotopy types of stunted lens spaces*, Hiroshima Math. J.**1**(1971), 287–304. MR**312505** - Teiichi Kobayashi and Masahiro Sugawara,
*Note on $\textrm {KO}$-rings of lens spaces mod $2^{r}$*, Hiroshima Math. J.**8**(1978), no. 1, 85–90. MR**485765** - Susumu Kôno,
*Stable homotopy types of stunted lens spaces mod $4$*, Osaka J. Math.**29**(1992), no. 4, 697–717. MR**1192736** - Susumu Kôno and Akie Tamamura,
*$J$-groups of suspensions of stunted lens spaces mod $4$*, Osaka J. Math.**26**(1989), no. 2, 319–345. MR**1017590** - Kee Yuen Lam,
*$K\textrm {O}$-equivalences and existence of nonsingular bilinear maps*, Pacific J. Math.**82**(1979), no. 1, 145–154. MR**549839** - Mark Mahowald,
*The metastable homotopy of $S^{n}$*, Memoirs of the American Mathematical Society, No. 72, American Mathematical Society, Providence, R.I., 1967. MR**0236923** - Mark Mahowald,
*The image of $J$ in the $EHP$ sequence*, Ann. of Math. (2)**116**(1982), no. 1, 65–112. MR**662118**, DOI 10.2307/2007048 - Douglas C. Ravenel,
*Complex cobordism and stable homotopy groups of spheres*, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR**860042** - Robert M. Switzer,
*Algebraic topology—homotopy and homology*, Die Grundlehren der mathematischen Wissenschaften, Band 212, Springer-Verlag, New York-Heidelberg, 1975. MR**0385836** - Akie Tamamura and Susumu Kôno,
*On the $K\textrm {O}$-cohomologies of the stunted lens spaces*, Math. J. Okayama Univ.**29**(1987), 233–244 (1988). MR**936748** - George W. Whitehead,
*Elements of homotopy theory*, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR**516508**

## Additional Information

**Huajian Yang**- Affiliation: Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015
- Received by editor(s): June 6, 1995
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 4775-4798 - MSC (1991): Primary 55T15, 55T25
- DOI: https://doi.org/10.1090/S0002-9947-98-02403-9
- MathSciNet review: 1624226