The Stable Homotopy Types of Stunted Lens Spaces mod 4
HTML articles powered by AMS MathViewer
- by Huajian Yang
- Trans. Amer. Math. Soc. 350 (1998), 4775-4798
- DOI: https://doi.org/10.1090/S0002-9947-98-02403-9
- PDF | Request permission
Abstract:
Let $L^{n+k}_n$ be the mod $4$ stunted lens space $L^{n+k}/L^{n-1}$. Let $\nu (m)$ denote the exponent of $2$ in $m$, and $\phi (k)$ the number of integers $j$ satisfying $j\equiv 0,1, 2, 4 (\operatorname {mod}8)$, and $0< j\leq k$. In this paper we complete the classification of the stable homotopy types of mod $4$ stunted lens spaces. The main result (Theorem 1.3 (i)) is that, under some appropriate conditions, $L^{n+k}_n$ and $L^{m+k}_m$ are stably equivalent iff $\nu (n-m)\geq \phi (k)+\delta$, where $\delta =-1, 0$ or $1$.References
- J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603–632. MR 139178, DOI 10.2307/1970213
- J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20–104. MR 141119, DOI 10.2307/1970147
- M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291–310. MR 131880, DOI 10.1112/plms/s3-11.1.291
- Donald M. Davis and Mark Mahowald, Classification of the stable homotopy types of stunted real projective spaces, Pacific J. Math. 125 (1986), no. 2, 335–345. MR 863530
- Donald Davis, Generalized homology and the generalized vector field problem, Quart. J. Math. Oxford Ser. (2) 25 (1974), 169–193. MR 356053, DOI 10.1093/qmath/25.1.169
- Donald M. Davis and Mark Mahowald, Homotopy groups of some mapping telescopes, Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 126–151. MR 921475
- Samuel Feder, Samuel Gitler, and Mark E. Mahowald, On the stable homotopy type of stunted projective spaces, Bol. Soc. Mat. Mexicana (2) 22 (1977), no. 1, 1–5. MR 527670
- K. Fujii, T. Kobayashi, and M. Sugawara, Stable homotopy types of stunted lens spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 3 (1982), 21–27. MR 643923
- Jesus Gonzalez, Classification of the stable homotopy types of stunted lens spaces mod $p$, to appear.
- Dale Husemoller, Fibre bundles, 2nd ed., Graduate Texts in Mathematics, No. 20, Springer-Verlag, New York-Heidelberg, 1975. MR 0370578
- Teiichi Kobayashi and Masahiro Sugawara, On stable homotopy types of stunted lens spaces, Hiroshima Math. J. 1 (1971), 287–304. MR 312505
- Teiichi Kobayashi and Masahiro Sugawara, Note on $\textrm {KO}$-rings of lens spaces mod $2^{r}$, Hiroshima Math. J. 8 (1978), no. 1, 85–90. MR 485765
- Susumu Kôno, Stable homotopy types of stunted lens spaces mod $4$, Osaka J. Math. 29 (1992), no. 4, 697–717. MR 1192736
- Susumu Kôno and Akie Tamamura, $J$-groups of suspensions of stunted lens spaces mod $4$, Osaka J. Math. 26 (1989), no. 2, 319–345. MR 1017590
- Kee Yuen Lam, $K\textrm {O}$-equivalences and existence of nonsingular bilinear maps, Pacific J. Math. 82 (1979), no. 1, 145–154. MR 549839
- Mark Mahowald, The metastable homotopy of $S^{n}$, Memoirs of the American Mathematical Society, No. 72, American Mathematical Society, Providence, R.I., 1967. MR 0236923
- Mark Mahowald, The image of $J$ in the $EHP$ sequence, Ann. of Math. (2) 116 (1982), no. 1, 65–112. MR 662118, DOI 10.2307/2007048
- Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042
- Robert M. Switzer, Algebraic topology—homotopy and homology, Die Grundlehren der mathematischen Wissenschaften, Band 212, Springer-Verlag, New York-Heidelberg, 1975. MR 0385836
- Akie Tamamura and Susumu Kôno, On the $K\textrm {O}$-cohomologies of the stunted lens spaces, Math. J. Okayama Univ. 29 (1987), 233–244 (1988). MR 936748
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
Bibliographic Information
- Huajian Yang
- Affiliation: Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015
- Received by editor(s): June 6, 1995
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 4775-4798
- MSC (1991): Primary 55T15, 55T25
- DOI: https://doi.org/10.1090/S0002-9947-98-02403-9
- MathSciNet review: 1624226