Turnpike property for extremals of variational problems with vector-valued functions
HTML articles powered by AMS MathViewer
- by A. J. Zaslavski
- Trans. Amer. Math. Soc. 351 (1999), 211-231
- DOI: https://doi.org/10.1090/S0002-9947-99-02132-7
- PDF | Request permission
Abstract:
In this paper we study the structure of extremals $\nu \colon [0,T]\to R^n$ of variational problems with large enough $T$, fixed end points and an integrand $f$ from a complete metric space of functions. We will establish the turnpike property for a generic integrand $f$. Namely, we will show that for a generic integrand $f$, any small $\varepsilon >0$ and an extremal $\nu \colon [0,T]\to R^n$ of the variational problem with large enough $T$, fixed end points and the integrand $f$, for each $\tau \in [L_1, T-L_1]$ the set $\{\nu (t)\colon t\in [\tau ,\tau +L_2]\}$ is equal to a set $H(f)$ up to $\varepsilon$ in the Hausdorff metric. Here $H(f)\subset R^n$ is a compact set depending only on the integrand $f$ and $L_1>L_2>0$ are constants which depend only on $\varepsilon$ and $|\nu (0)|$, $|\nu (T)|$.References
- Z. Artstein and A. Leizarowitz, Tracking periodic signals with overtaking criterion, IEEE Trans. on Autom. Control AC 30 (1985), 1122–1126.
- Jean-Pierre Aubin and Ivar Ekeland, Applied nonlinear analysis, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 749753
- J. M. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Rational Mech. Anal. 90 (1985), no. 4, 325–388. MR 801585, DOI 10.1007/BF00276295
- W. A. Brock and A. Haurie, On existence of overtaking optimal trajectories over an infinite time horizon, Math. Oper. Res. 1 (1976), no. 4, 337–346. MR 456752, DOI 10.1287/moor.1.4.337
- Dean A. Carlson, The existence of catching-up optimal solutions for a class of infinite horizon optimal control problems with time delay, SIAM J. Control Optim. 28 (1990), no. 2, 402–422. MR 1040467, DOI 10.1137/0328022
- D. A. Carlson, A. Haurie, and A. Jabrane, Existence of overtaking solutions to infinite-dimensional control problems on unbounded time intervals, SIAM J. Control Optim. 25 (1987), no. 6, 1517–1541. MR 912454, DOI 10.1137/0325084
- D. A. Carlson, A. Haurie and A. Leizarowitz, Infinite horizon optimal control, Springer-Verlag, Berlin, 1991.
- Bernard D. Coleman, Moshe Marcus, and Victor J. Mizel, On the thermodynamics of periodic phases, Arch. Rational Mech. Anal. 117 (1992), no. 4, 321–347. MR 1148212, DOI 10.1007/BF00376187
- John L. Kelley, General topology, Graduate Texts in Mathematics, No. 27, Springer-Verlag, New York-Berlin, 1975. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.]. MR 0370454
- Arie Leizarowitz, Existence of overtaking optimal trajectories for problems with convex integrands, Math. Oper. Res. 10 (1985), no. 3, 450–461. MR 798390, DOI 10.1287/moor.10.3.450
- A. Leizarowitz, Infinite horizon autonomous systems with unbounded cost, Appl. Math. Optim. 13 (1985), no. 1, 19–43. MR 778419, DOI 10.1007/BF01442197
- Arie Leizarowitz, Optimal trajectories of infinite-horizon deterministic control systems, Appl. Math. Optim. 19 (1989), no. 1, 11–32. MR 955088, DOI 10.1007/BF01448190
- Arie Leizarowitz and Victor J. Mizel, One-dimensional infinite-horizon variational problems arising in continuum mechanics, Arch. Rational Mech. Anal. 106 (1989), no. 2, 161–194. MR 980757, DOI 10.1007/BF00251430
- V. L. Makarov and A. M. Rubinov, Mathematical theory of economic dynamics and equilibria, Springer-Verlag, New York-Heidelberg, 1977. Translated from the Russian by Mohamed El-Hodiri. MR 0439072, DOI 10.1007/978-1-4612-9886-1
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511, DOI 10.1007/978-3-540-69952-1
- A. M. Rubinov, Economic dynamics, Current problems in mathematics, Vol. 19, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1982, pp. 59–110 (Russian). MR 662569
- A. J. Zaslavski, Optimal programs on infinite horizon. I, II, SIAM J. Control Optim. 33 (1995), no. 6, 1643–1660, 1661–1686. MR 1358089, DOI 10.1137/S036301299325726X
- A. J. Zaslavski, Optimal programs on infinite horizon. I, II, SIAM J. Control Optim. 33 (1995), no. 6, 1643–1660, 1661–1686. MR 1358089, DOI 10.1137/S036301299325726X
- A. J. Zaslavski, The existence and structure of extremals for a class of second order infinite horizon variational problems, J. Math. Anal. Appl. 194 (1995), no. 3, 660–696. MR 1350190, DOI 10.1006/jmaa.1995.1323
- A. J. Zaslavski, Dynamic properties of optimal solutions of variational problems, Nonlinear Anal. 27 (1996), no. 8, 895–931. MR 1404591, DOI 10.1016/0362-546X(95)00029-U
- A. J. Zaslavski, Structure of extremals for one-dimensional variational problems arising in continuum mechanics, J. Math. Anal. Appl. 198 (1996), no. 3, 893–921. MR 1377832, DOI 10.1006/jmaa.1996.0120
Bibliographic Information
- A. J. Zaslavski
- Affiliation: Department of Mathematics, Technion-Israel Institute of Technology, Haifa, 32000, Israel
- MR Author ID: 195582
- Email: ajzasl@techunix.technion.ac.il
- Received by editor(s): September 29, 1995
- Received by editor(s) in revised form: November 18, 1996
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 211-231
- MSC (1991): Primary 49J99, 58F99
- DOI: https://doi.org/10.1090/S0002-9947-99-02132-7
- MathSciNet review: 1458340