Multi-separation, centrifugality and centripetality imply chaos
HTML articles powered by AMS MathViewer
- by Jiehua Mai
- Trans. Amer. Math. Soc. 351 (1999), 343-351
- DOI: https://doi.org/10.1090/S0002-9947-99-02191-1
- PDF | Request permission
Abstract:
Let $I$ be an interval. $I$ need not be compact or bounded. Let $f:I\rightarrow I$ be a continuous map, and $(x_0, x_1, \cdots , x_n)$ be a trajectory of $f$ with $x_n\leq x_0<x_1$ or $x_1<x_0\leq x_n$. Then there is a point $v\in I$ such that $\min \{x_0, \cdots , x_n\}<v=f(v)<\max \{x_0, \cdots , x_n\}$. A point $y\in I$ is called a centripetal point of $f$ relative to $v$ if $y<f(y)<v$ or $v<f(y)<y$, and $y$ is centrifugal if $f(y)<y<v$ or $v<y<f(y)$. In this paper we prove that if there exist $k$ centripetal points of $f$ in $\{x_0, \cdots , x_{n-1}\}, k\geq 1$, then $f$ has periodic points of some odd ($\not = 1$) period $p\leq (n-2)/k+2$. In addition, we also prove that if $(x_0, x_1, \cdots , x_{n-1}$) is multi-separated by Fix($f$), or there exists a centrifugal point of $f$ in $\{x_0, \cdots , x_{n-1}\}$, then $f$ is turbulent and hence has periodic points of all periods.References
- L. S. Block and W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics, vol. 1513, Springer-Verlag, Berlin, 1992. MR 1176513, DOI 10.1007/BFb0084762
- Louis Block, John Guckenheimer, MichałMisiurewicz, and Lai Sang Young, Periodic points and topological entropy of one-dimensional maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) Lecture Notes in Math., vol. 819, Springer, Berlin, 1980, pp. 18–34. MR 591173
- Michael J. Evans, Paul D. Humke, Cheng Ming Lee, and Richard J. O’Malley, Characterizations of turbulent one-dimensional mappings via $\omega$-limit sets, Trans. Amer. Math. Soc. 326 (1991), no. 1, 261–280. MR 1010884, DOI 10.1090/S0002-9947-1991-1010884-3
- R. Graw, On the connection between periodicity and chaos of continuous functions and their iterates, Aequationes Math. 19(1979), 277–278.
- K. Janková and J. Smítal, A characterization of chaos, Bull. Austral. Math. Soc. 34 (1986), no. 2, 283–292. MR 854575, DOI 10.1017/S0004972700010157
- Tien Yien Li, MichałMisiurewicz, Giulio Pianigiani, and James A. Yorke, No division implies chaos, Trans. Amer. Math. Soc. 273 (1982), no. 1, 191–199. MR 664037, DOI 10.1090/S0002-9947-1982-0664037-3
- T. Y. Li and James A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), no. 10, 985–992. MR 385028, DOI 10.2307/2318254
- A. N. Sarkovskii, Coexistence of cycles of a continuous map of a line into itself, Ukrain.Mat.Z. 16(1964), 61–71.
Bibliographic Information
- Jiehua Mai
- Affiliation: Institute of Mathematics, Shantou University, Shantou, Guangdong 515063 P. R. China
- Email: jhmai@mailserv.stu.edu.cn
- Received by editor(s): January 30, 1997
- Additional Notes: This research was supported by the National Natural Science Foundation of China
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 343-351
- MSC (1991): Primary 58F03; Secondary 58F13, 26A18
- DOI: https://doi.org/10.1090/S0002-9947-99-02191-1
- MathSciNet review: 1473450