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THE KREIN-MILMAN THEOREM IN OPERATOR CONVEXITY

CORRAN WEBSTER AND SOREN WINKLER

Abstract. We generalize the Krein-Milman theorem to the setting of ma-
trix convex sets of Effros-Winkler, extending the work of Farenick-Morenz on
compact C∗-convex sets of complex matrices and the matrix state spaces of
C∗-algebras. An essential ingredient is to prove the non-commutative analogue
of the fact that a compact convex set K may be thought of as the state space
of the space of continuous affine functions on K.

The Krein-Milman theorem is without doubt one of the cornerstones of functional
analysis. With the rise of non-commutative functional analysis and related notions
of convexity ([15], [10], [11]), the question naturally arises how to formulate a notion
of extreme points for which the theorem remains true.

Such a notion exists in the case of C∗-convexity, which has been studied by Loebl-
Paulsen ([15]), Hopenwasser-Moore-Paulsen ([12]), and, more recently, Farenick-
Morenz ([7], [8], [9], [17]). C∗-convexity is the natural extension of the classi-
cal scalar-valued convex combination to include C∗-algebra-valued coefficients. It
therefore makes sense in a C∗-algebra and, more generally, for bimodules over C∗-
algebras. In particular, there is a rich class of such C∗-convex sets in the n × n
complex matrices,Mn. The matrix state spaces of a C∗-algebra are another class
of examples. In both these cases the C∗-convexity version of the Krein-Milman has
been proven to hold by Farenick and Morenz ([9], [17]).

The above two examples both fit in the framework of another non-commutative
convexity theory, the theory of matrix convex sets, developed by Effros and the
second author ([11], [21]). In this paper we develop a notion of extreme points
in this context, and we prove a corresponding Krein-Milman result, including a
minimality condition which shows that the result is indeed optimal. Even though
the difference between extremality in C∗-convexity and matrix convexity might
seem minor at first, we hope to convince the reader that our approach is the natural
one. Moreover, our methods are seemingly new and different, the central idea being
to prove the analogue of the fact that a compact convex set K can be represented
as the state space of the space of continuous affine functions on K.

We begin with a review of matrix convexity, followed by a treatment of extreme
points in this context. We then prove our representation result, from which we
proceed to prove the Krein-Milman theorem.

We wish to thank Douglas Farenick and Phillip Morenz for making a copy of [9]
available to us.

Received by the editors January 22, 1997.
1991 Mathematics Subject Classification. Primary 47D20; Secondary 46A55, 46L89.
Key words and phrases. Krein-Milman, non-commutative convexity.
The first author was supported by the NSF and the second author by the EPSRC and the EU.

c©1999 American Mathematical Society

307



308 CORRAN WEBSTER AND SOREN WINKLER

1. Matrix convexity

All vector spaces are assumed to be complex throughout this paper. LetMm,n(V )
denote the vector space of m×n matrices over a vector space V , and set Mn(V ) =
Mn,n(V ). We write Mm,n = Mm,n(C) and Mn = Mn,n(C), which means that we
may identify Mm,n(V ) with the tensor product Mm,n ⊗ V . We use the standard
matrix multiplication and ∗-operation for compatible scalar matrices, and In for
the identity matrix in Mn.

The multiplication of scalar matrices induces a bimodule operation of scalar
matrices on Mm(V ) via the identification with Mm ⊗ V , i.e., for v ∈ Mm(V ) and
α ∈ Mn,m, β ∈ Mm,n, we define

αvβ =
[∑

j,k αijvjkβkl

] ∈Mn(V ).

The following definition of a non-commutative convex set was first proposed by
Wittstock ([22]).

Definition 1.1. A matrix convex set in a vector space V is a collection K = (Kn)
of subsets Kn ⊂Mn(V ) such that

k∑
i=1

γ∗i viγi ∈ Kn

for all vi ∈ Kni and γi ∈ Mni,n for i = 1, . . . , k satisfying
∑

i γ
∗
i γi = In.

We shall say that v =
∑

i γ
∗
i viγi as above is a matrix convex combination of

v1, . . . , vk.
If we restrict ourselves to a fixed n ∈ N and a single set Kn ⊂Mn(V ) satisfying

the above with n = n1 = · · · = nk, then we exactly get the definition of a C∗-convex
set over Mn. This can easily be extended to arbitrary bimodules over unital C∗-
algebras (cf. [8]), but in this paper we will only consider the case of Mn-bimodules.
The examples below show in particular that the standard examples of C∗-convex
sets (cf. [9], [17]) come with natural matrix convexity structure.

Example 1.2. Given a, b ∈ R ∪ {±∞}, the collection [a I, b I] = ([aIn, bIn]) of
intervals

[aIn, bIn] = {α ∈ Mn | aIn ≤ α ≤ bIn}
defines a matrix convex set in C. It is easy to show ([11, Lemma 3.1]) that any
matrix convex set K = (K1) in C where K1 is a closed convex subset of R is of this
form.

As for more general matrix convex sets over C, it follows from results of Arveson
that any closed and bounded matrix convex set K in C is the set of matrix ranges
W(T ) = (Wn(T )) of a Hilbert space operator T acting on a separable Hilbert space
H (cf. [3], p.301, and [15, Proposition 31]). The matrix ranges of T are defined as

Wn(T ) = {ϕ(T ) |ϕ : B(H) → Mn completely positive and ϕ(I) = In}.
As the second part of above example shows, there is already a rich class of matrix

convex sets in even the simplest possible case. The study of matrix ranges has been
a driving force behind the C∗-convexity theory. (See [19], [20], [7] and the references
therein, for example.)
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Example 1.3. Consider an operator space M (i.e., a closed linear subspace of the
bounded operators on a Hilbert space H, B(H)). The natural inclusion

Mn(M) ↪→Mn(B(H)) ' B(Hn)(1)

endows Mn(M) with a norm using the operator norm on B(Hn), and it is easy to
check that the collection B = (Bn) of unit balls

Bn = {x ∈Mn(M) | ‖x‖ ≤ 1}
is a matrix convex set in M.

Based on Ruan’s abstract characterization ([18]), operator spaces may be thought
of as the non-commutative analogue of Banach spaces. In this line of thought, the
above example is an analogue of a balanced convex set.

The objects of the next example are the non-commutative analogues of Kadi-
son’s function systems ([13]), which are closed subspaces of C(X), the continuous
functions on a compact set X , closed under conjugation and containing the identity
function.

Example 1.4. If R is an operator system (a closed subspace of B(H), closed under
the adjoint operation and containing the identity operator I), then the inclusion (1)
defines an ordering on Mn(R) via the usual ordering on B(Hn). In this case the
collection P = (Pn) of positive cones

Pn = {x ∈Mn(R) |x ≥ 0}
form a matrix convex set in R.

We may also consider the collection CS(R) = (CSn(R)) of matrix states

CSn(R) = {ϕ : R → Mn |ϕ completely positive, ϕ(I) = In},
where we recall that ϕ : R → Mn is completely positive if the canonical amplifica-
tions ϕr : Mr(R) →Mr(Mn) given by ϕr = id⊗ϕ are positive for all r ∈ N. Again
we get a matrix convex set (in R∗). We consider CS(R) the matricial version of
the state space. This fits well with Example 1.2 because for T ∈ B(H) the matrix
ranges are given by Wn(T ) = {ϕ(T ) |ϕ ∈ CSn(B(H))}.

Parallel to the abstract characterization of Kadison’s function systems as com-
plete order unit spaces (cf. [1, Section II 1]), operator systems have been charac-
terized by Choi-Effros ([5, Theorem 4.4]) as those matrix ordered spaces R, where
R itself is a function system, and Mn(R)+ satisfies the Archimedian property for
all n ∈ N. We will use this theorem in Section 3. We refer to [1] and [5] for the
relevant definitions.

We should comment here, for the benefit of those unfamiliar with the theory of
operator systems and operator spaces, that these examples explain why we consider
matrix convex sets to be the appropriate generalization of convex sets for non-
commutative functional analysis. Not only do the sets B and P play analogous roles
to convex sets in the classical theory, but they are in some sense optimal. Simple
examples show that one cannot replace these sets by a collection of sets in a finite
number of levels and still be able to distinguish general operator spaces or operator
systems using them. On the other hand no more information is needed, since Ruan’s
theorem and the Choi-Effros characterization ([5, Theorem 4.4]) respectively tell
us that these matrix sets are sufficient to tell spaces of the appropriate type apart.

Much knowledge about matrix states and their extremal properties goes back
to Arveson’s seminal work [2], [3]. We shall need the following consequence of
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Arveson’s boundary theorem ([3, Theorem 2.1.1], [6]). (Arveson’s theorem is much
more general than the case below for which a simpler proof is possible.)

Proposition 1.5. Let R be an operator system in Mn, and assume that R is irre-
ducible in the sense that only the trivial subspaces {0} and Cn are invariant under
R. If ψ : Mn → Mn is a matrix state and ψ|R = id, then ψ = id.

For a detailed account of matrix convexity we refer to [11] or [21]. By an easy
translation argument the following version of the separation-type Hahn-Banach
theorem follows from the generalized Bipolar theorem proved in [11].

Theorem 1.6. Let V be a locally convex vector space. Assume that K = (Kr) is a
matrix convex set in V , such that Kr is closed in the product topology in Mr(V ) for
all r ∈ N. Given v0 6∈ Kn for some n ∈ N, there exist a continuous linear mapping
Φ : V → Mn and a self-adjoint α ∈ Mn such that

Re Φr(v) ≤ α⊗ Ir

for all r ∈ N, v ∈ Kr, and

Re Φn(v0) 6≤ α⊗ In.

Moreover, if 0 ∈ K1, then α may be chosen to be In.

2. Matrix extreme points

Inspired by the notion of extreme points in the C∗-convexity case, we now in-
troduce extreme points suitable for matrix convexity. As a natural extension of a
proper scalar convex combination, we say that a matrix convex combination

v =
k∑

i=1

γ∗i viγi

with γi ∈ Mni,n for i = 1, . . . , k satisfying
∑

i γ
∗
i γi = In is proper if each γi has a

right inverse belonging to Mn,ni , i.e., if γi is surjective as a linear map Cn → Cni .
In particular, we must have that n ≥ ni.

Definition 2.1. Suppose that K = (Kn) is a matrix convex set in V . Then v ∈ Kn

is a matrix extreme point if whenever v is a proper matrix convex combination of
vi ∈ Kni for i = 1, . . . , k, then each ni = n and v = u∗i viui for some unitary
ui ∈ Mn.

Let ∂Kn be the (possibly empty) set of matricial extreme points in Kn and set
∂K = (∂Kn).

Observe that for n = 1, a proper matrix convex combination reduces to a proper
scalar convex combination of elements in V . Therefore the matrix extreme points in
K1 coincide with the usual extreme points. This also shows that if K1 is compact,
then, by Krein-Milman, ∂K1 is non-empty. By contrast, ∂Kn might be empty for
all n > 1, as Example 2.2 below will show.

As remarked in [15, Remark 12] the occurrence of unitary equivalence in the
definition of matrix extreme points is quite natural, because if v ∈ Kn and u ∈ Mn

is unitary, then w = u∗vu is a proper matrix combination of v.
We saw in the previous section how each Kn of a matrix convex set K is a

C∗-convex set over Mn. Similarly, if we fix n in the above, we get the definition of a
C∗-extreme point of Kn. As we shall see in Example 2.3 the C∗-extreme points and
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the matrix extreme points do not necessarily agree, but clearly the matrix extreme
points are also C∗-extreme. We shall see later (Corollary 3.6) that matrix extreme
points are also extreme points in the usual sense.

In the case of a compact matrix convex set in C, i.e., if K = W(T ) for some
operator T ∈ B(H) (cf. Example 1.2), it follows from the work of Morenz ([17,
Proposition 2.2]) that matrix extreme points in Kn correspond exactly to the so-
called structural elements of size n. Adding to our conviction that one should study
the whole of K and not just Kn, is the observation that the results of the same
paper are obtained by introducing structural elements in Kr for r ≤ n (cf. [17,
Definition 2.3]).

Example 2.2. With a, b ∈ R the matrix extreme points of the matrix interval
[a I, b I] of Example 1.2 are just a and b, i.e.,

∂[aIn, bIn] =

{
{a, b}, n = 1;
∅, n > 1.

Since the matrix extreme points of K1 are the classical extreme points, we have
∂[aI1, bI1] = ∂[a, b] = {a, b}. Moreover, any element v ∈ [aIn, bIn] can be written

v = u∗

v1 . . .
vn

u =
∑

i

γ∗i viγi

with vi ∈ [a, b] and a unitary

u =

γ1

...
γn

 ∈ Mn,

where γ1, . . . , γn ∈ M1,n. Since u is unitary, γ1, . . . , γn defines a proper matrix
convex combination, and therefore no element in [aIn, bIn] for n > 1 can be matrix
extreme.

Based on Farenick-Morenz’ description of the C∗-extreme points of the matrix
state spaces CSn(A) for a C∗-algebra A (cf. Example 1.4), we may characterize the
matrix extreme points of CS(A). Recall, that a completely positive map ϕ is pure
if whenever ψ is a completely positive map such that ϕ− ψ is completely positive,
then ψ = tϕ for some 0 ≤ t ≤ 1.

Example 2.3. The matrix extreme points of CS(A) for a C∗-algebraA are exactly
the pure matrix states, i.e.,

∂CSn(A) = {ϕ : A → Mn |ϕ completely positive, pure, and ϕ(I) = In}.
Assume that ϕ ∈ CSn(A) is pure, and that ϕ =

∑
i γ

∗
i ϕiγi is a proper matrix

convex combination of ϕi ∈ CSni(A) and γi ∈ Mni,n. Since ϕ−γ∗i ϕiγi is completely
positive, γ∗i ϕiγi = tiϕ for some 0 ≤ ti ≤ 1. But ϕ and ϕi are unital, so γ∗i γi = tiIn.
Since γi is surjective, t−1/2

i γi implements a unitary equivalence between ϕ and ϕi.
Therefore all pure matrix states are matrix extreme.

Moreover, by [9, Theorem 2.1] every C∗-extreme point ϕ is unitarily equivalent
to a direct sum of pure matrix states. If the direct sum contains more than just one
pure matrix state, then ϕ is a proper matrix convex combination of smaller pure
matrix states, just as in Example 2.2, and therefore not matrix extreme. Since all
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matrix extreme points are C∗-extreme, this shows that only the pure matrix states
are matrix extreme.

The above two examples illustrate the advantages of the notion of matrix extreme
points. On the one hand they establish a clear-cut analogy with the commutative
case: in Example 2.2, where the non-commutative aspect plays no important role
(since the matrix sets are completely determined by their first levels), we find
that the theory reverts to the classical theory. On the other hand they provide
us with a “non-commutative” structure which gives us strictly more information
about the matrix set than we could gain from the extreme points at the first level
alone. Additionally, in the second example, they demonstrate a particularly clear
relationship with objects of interest in C∗-algebra theory.

3. Compact matrix convex sets

There is a natural correspondence between compact convex sets and function
systems. On one hand, each compact convex subset K of a locally convex space
determines the function system A(K) = {F : K → C |F continuous and affine}.
Conversely, if we are given a function system R, then the state space S(R) = {ϕ ∈
R∗ |ϕ ≥ 0, ϕ(I) = 1} is a weakly compact convex subset of R∗. Moreover, K is
affinely homeomorphic to S(A(K)), and R and A(S(R)) are isomorphic as function
systems. (See [1, Section II 1].) The real case is usually the only one considered in
the literature, but the fact that it remains true in the complex case is fundamental
to this section.

With our claim that operator systems are the non-commutative analogues of
function systems (cf. Example 1.4), it is only natural to demand that a “compact
matrix convex set” should satisfy a similar correspondence. Establishing this is the
main purpose of this section.

Definition 3.1. We define a compact matrix convex set to be a matrix convex
subset K = (Kn) of a locally convex vector space V such that each Kn is compact
in the product topology in Mn(V ).

We remark that it is a consequence of [16, Theorems 3.1 and 3.2] that compact-
ness of Kn is not necessarily implied by compactness of K1.

Example 3.2. The matrix intervals [a I, b I] for a, b ∈ R and the matrix ranges
W(T ) for T ∈ B(H) as defined in Example 1.2, are both compact matrix convex
sets in C. Conversely, any compact matrix convex set in C is of this form, as already
pointed out in Example 1.2.

Example 3.3. If CS(R) are the matrix state spaces of an operator system R, as
defined in Example 1.4, then it is straightforward to see that CS(R) is a compact
matrix convex set in R∗, equipped with the weak∗ topology.

We recall that the adjoint or ∗-operation in R induces an adjoint operation in
R∗, in which the self-adjoint elements correspond to linear functionals mapping
self-adjoint elements of R into R. This, in turn, induces a ∗-operation in Mn(R∗),
and under the canonical identification of Mn(R∗) with the weakly continuous linear
maps R → Mn, the self-adjoint elements of Mn(R∗) correspond to the maps that
send self-adjoint elements in R to self-adjoint elements in Mn. This shows in
particular that CS(R) is closed under this ∗-operation.
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Given a compact matrix convex set K, we know from the commutative case
that K1 and S(A(K1)) are affinely homeomorphic. We wish to define an operator
system structure on A(K1) that extends this to Kn and CSn(A(K1)). At the same
time we also demand that if K = CS(R) for an operator system R, then the
corresponding operator system structure on A(S(R)) coincides with R.

To this end we apply the Choi-Effros’ abstract characterization of operator sys-
tems (cf. Example 1.4), but first we introduce the following natural notion of a
morphism on a matrix convex set.

Definition 3.4. A matrix affine mapping on a matrix convex subset K = (Kn) of
a vector space V is a sequence θ = (θn) of mappings θn : Kn → Mn(W ) for some
vector space W , such that

θn(
k∑

i=1

γ∗i viγi) =
k∑

i=1

γ∗i θni(vi)γi,

for all vi ∈ Kni and γi ∈ Mni,n for i = 1, . . . , k satisfying
∑

i γ
∗
i γi = In.

If ϕ : V → W is a linear map and w0 ∈ W , then θn = ϕn|Kn + In ⊗ w0 defines
a matrix affine map. The converse is not true in general, even in the classical
case: consider for instance z → Re z with V = W = C, K = [0, 1] × [0, 1] and
L = {0} × [0, 1] (identifying C with R2). The obstruction disappears if V and W
are ∗-vector spaces and K1 is self-adjoint, but we have not included the proof of
this fact, as it will not be needed in this paper.

If V and W are locally convex spaces, then we say that θ as above is a matrix
affine homeomorphism if each θn is a homeomorphism. Note that in this case (θ−1

n )
is automatically matrix affine, and that it suffices to prove continuity of θn if K is
compact.

Given a compact matrix convex set K, we define A(K,Mr) to be the set of all
matrix affine mappings F = (Fn) : K → Mr, such that F1 is continuous. Using the
linear structure and the adjoint operation in Mn(Mr), A(K,Mr) becomes a vector
space with a ∗-operation under pointwise operations. Similarly, the order structure
in Mn(Mr) defines a positive cone in A(K,Mr), where F ≥ 0 in A(K,Mr) if
Fn(v) ≥ 0 for all n ∈ N and v ∈ Kn.

Observe that if we define I = (In) in A(K,C) by In(v) = In for v ∈ Kn, then
we can define a unital order preserving bijection Ω of A(K,C) onto A(K1) by
mapping F = (Fn) to F1. Indeed, this is clearly a positive unital map. Moreover,
for a self-adjoint F = (Fn), Fn is completely determined by F1 via

〈Fn(v)ξ | ξ〉 = ξ∗Fn(v)ξ = F1(ξ∗vξ)

for any unit vector ξ ∈ Cn, considered as a row matrix, and v ∈ Kn. This formula
shows that Ω is injective, and it may in turn be used to define an order preserving
inverse. By the characterization of function systems as complete order unit spaces,
this means that A(K,C) and A(K1) are isomorphic as function systems. We remark
that the above formula also shows that each Fn is continuous.

It is now possible to identify Mr(A(K,C)) and A(K,Mr), and we may thus use
the ordering on A(K,Mr) to define a positive cone in Mr(A(K,C)). In this manner
A(K,C) becomes a matrix ordered space. Using the identification of A(K,C) and
A(K1), it is now straightforward to check that A(K,C) satisfies the Choi-Effros
axioms ([5]) for an operator system with the order unit I. We will simply denote
the corresponding operator system by A(K).
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Proposition 3.5.
1. If R is an operator system, then CS(R) is a self-adjoint compact matrix

convex set in R∗, equipped with the weak∗ topology, and A(CS(R)) and R
are isomorphic as operator systems.

2. If K is a compact matrix convex set in a locally convex space V , then A(K)
is an operator system, and K and CS(A(K)) are matrix affinely homeomor-
phic.

Proof. (1). Set K = CS(R). We need to show that there exists a unital matrix
order preserving bijection between R and A(K). We know that R and A(K1) '
A(K) are isomorphic as function systems via the usual embedding, mapping x ∈ R
to ϕ 7→ ϕ(x) for ϕ ∈ K1 (cf. [1, Section II 1]). It therefore suffices to check that the
matrix orderings are preserved. On the level of matrices, this map sends x ∈Mr(R)
to F ∈ Mr(A(K)) ' A(K,Mr) given by Fn(ϕ) = ϕr(x) for ϕ ∈ Kn. This shows
the claim, since x ≥ 0 if and only if ϕr(x) ≥ 0 for all ϕ ∈ CSn(R), n ∈ N by [5, p.
178].

(2). The usual evaluation map of K1 onto S(A(K1)) extends to a mapping
θn : Kn → CSn(A(K)) mapping v ∈ Kn to F 7→ Fn(v). We claim that θ = (θn) is
a matrix affine homeomorphism of K onto CS(A(K)).

It is straightforward to check that θ is a matrix affine map into CS(A(K)), and
that each θn is continuous using the weak∗ topology in A(K)∗.

To see injectivity, let V ′ be the continuous dual of V , and then observe that f ∈
V ′ defines an element in A(K) determined by the linear map v ∈ V 7→ f(v) ∈ C.
If θn(v) = θn(w) for v, w ∈ Kn, then in particular fn(v) = fn(w) for all f ∈ V ′,
which again implies that v = w, since V ′ separates points in V .

It remains to show surjectivity. Assume that ϕ0 ∈ CSn(A(K))\θn(Kn). By the
matricial separation theorem, Theorem 1.6, applied to A(K)∗, equipped with the
weak∗ topology, and the weakly closed matrix convex set θ(K) in A(K)∗, there
exist a weakly continuous linear map Φ : A(K)∗ → Mn and a self-adjoint α ∈ Mn,
such that

Re Φr(θr(v)) ≤ α⊗ Ir

for all r ∈ N, v ∈ Kr, and

Re Φn(ϕ0) 6≤ α⊗ In.

Identifying Φ with F ∈Mn(A(K)) ' A(K,Mn), this means that

ReFr(v) ≤ α⊗ Ir

for all v ∈ Kr, r ∈ N, and

Re(ϕ0)n(F ) 6≤ α⊗ In.

But the first inequality says that Re F ≤ α ⊗ I in Mn(A(K)), and since ϕ0 is
completely positive and unital,

Re(ϕ0)n(F ) ≤ (ϕ0)n(α⊗ I) = α⊗ ϕ0(I) = α⊗ In,

a contradiction. Hence θn is also onto.

The above proposition shows that we can always think of a compact matrix
convex set K as the matrix state spaces of an operator system R. This will be
crucial in our approach to the Krein-Milman theorem, but there are other benefits
obtained from this result. The corollary below shows that matrix extreme points
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are also classical extreme points, adapting the proofs of [9, Proposition 1.1] and
[15, Proposition 23].

Corollary 3.6. Let K = (Kn) be a compact matrix convex set in a locally convex
space V . If v is a matrix extreme point in Kn, then v is also an extreme point in
Kn.

Proof. By Proposition 3.5 it suffices to consider the case where K = CS(R) for
some operator system R, since both matrix extreme and extreme points are pre-
served under matrix affine homeomorphisms.

Assume that ϕ ∈ CSn(R) is a matrix extreme point, and that we are given a
proper convex combination ϕ = tϕ1+(1−t)ϕ2 with 0 < t < 1 and ϕ1, ϕ2 ∈ CSn(R).
Then ϕ is unitarily equivalent to ϕ1 and ϕ2, i.e., for any x ∈ R, ϕ(x) is written
as a proper convex combination of elements from its unitary orbit in Mn. By [14],
this implies that ϕ(x) = ϕ1(x) = ϕ2(x). Hence ϕ is extreme.

4. The Krein-Milman theorem for matrix convex sets

Given a collection S = (Sn) of subsets Sn ⊂Mn(V ) for some locally convex vec-
tor space V , we define the closed matrix convex hull co(S) to be the smallest closed
matrix convex set containing S. We can either describe co(S) as the intersection
of all closed matrix convex sets containing S, or, more explicitly, as the closure of
all elements v ∈Mn(V ) of the form

v =
k∑

i=1

γ∗i viγi

where vi ∈ Sni and γi ∈Mni,n for i = 1, . . . , k satisfying
∑

i γ
∗
i γi = In. The latter

description relies on the easy fact that the closure of a matrix convex set is again
a matrix convex set.

We remark in passing that using the notion of matrix polar as defined in [11],
it follows easily from Theorem 1.6 that if S contains the origin, then the double
matrix polar of S coincides with co(S).

Example 4.1. We saw in Example 2.2 that the matrix extreme points of the ma-
trix interval [a I, b I] with a, b ∈ R are a and b, i.e.,

∂[aIn, bIn] =

{
{a, b}, n = 1;
∅, n > 1.

It follows that [a I, b I] = co(∂[a I, b I]), since co(∂[a I, b I])1 = [a, b], and this
determines co(∂[a I, b I]) uniquely by Example 1.2.

The above is clearly an example of a Krein-Milman type result. The work of
Farenick-Morenz establishes a similar statement in the case of the matrix state
spaces on a C∗-algebra.

Example 4.2. In [9, Theorem 3.5] it is shown that for a C∗-algebra A, CSn(A)
is the closed C∗-convex hull of the the set of C∗-extreme points in CSn(A). In
Example 2.3 we observed that any C∗-extreme point of CSn(A) is a matrix convex
combination of matrix extreme points in CS(A). Since any C∗-convex combination
is also a matrix convex combination, the closed C∗-convex hull of the C∗-extreme
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points coincides with the closed matrix convex hull of the matrix extreme points,
i.e.,

CS(A) = co(∂CS(A)).

The above two examples are special cases of the following generalized version of
the Krein-Milman theorem.

Theorem 4.3. Let K be a compact matrix convex set in a locally convex space V ,
and let ∂K = (∂Kn) denote the collection of matrix extreme points ∂Kn of Kn.
Then ∂K is non-empty, and

K = co(∂K).

Before embarking on the proof, we shall introduce an auxiliary convex set ∆n(K),
which is an essential tool in the reduction to the classical Krein-Milman. For a col-
lection K = (Kr) of subsets Kr ⊂ Mr(V ) and a fixed n ∈ N, we define the subset
∆n(K) of Mn(V ) by

∆n(K) = {ξ∗vξ | v ∈ Kr, ξ ∈ Mr,n, ‖ξ‖2 = 1, r ∈ N},(2)

where ‖ · ‖2 denotes the Hilbert-Schmidt norm. We observe that if K is matrix
convex, then ∆n(K) is convex. Indeed, given 0 ≤ t ≤ 1 and ξ∗vξ, η∗wη ∈ ∆n(K)
with v ∈ Kr, w ∈ Ks and ξ ∈ Mr,n, η ∈ Ms,n satisfying ‖ξ‖2, ‖η‖2 = 1, then

tξ∗vξ + (1 − t)η∗wη =
[
t1/2ξ∗ (1− t)1/2η∗

] [
v 0
0 w

] [
t1/2ξ

(1− t)1/2η

]
where [

v 0
0 w

]
=

[
Ir

0

]
v

[
Ir 0

]
+

[
0
Is

]
w

[
0 Is

] ∈ Kr+s,

and ∥∥∥∥[
t1/2ξ

(1 − t)1/2η

]∥∥∥∥2

2

= t‖ξ‖22 + (1− t)‖η‖22 = 1.

Moreover, in (2) we may always choose ξ ∈ Mr,n such that ξ has a right inverse
(and in particular r ≤ n). To see this, let v ∈ Kr and ξ ∈ Mr,n with ‖ξ‖2 = 1 be
given, and let s be the dimension of the range of ξ. Letting ν ∈ Mr,s be an isometry
of Cs onto the range of ξ, we have that

ξ∗vξ = (ν∗ξ)∗(ν∗vν)(ν∗ξ)(3)

is the desired decomposition. In particular,

∆n(K) = {ξ∗vξ | v ∈ Kr, ξ ∈ Mr,n, ‖ξ‖2 = 1, r ≤ n},(4)

from which it follows that ∆n(K) is compact whenever Kn is. Observe that this
only relies on the fact that K is closed under isometries.

One of the important features of ∆n(K) is that there is a good description of
the extreme points in terms of the matrix extreme points. We begin with the case
of the matrix state spaces of an operator system.

Lemma 4.4. Let R be an operator system, and let ∆n(CS(R)) be defined as above.
If ϕ̄ is an extreme point of ∆n(CS(R)), then there exist a matrix extreme point
ϕ ∈ CSr(R) for some r ∈ N and a right invertible element ξ ∈ Mr,n with ‖ξ‖2 = 1
such that

ϕ̄ = ξ∗ϕξ.
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Proof. Assume that ϕ̄ is an extreme point of ∆n(CS(R)). By (3), we may write
ϕ̄ = ξ∗ϕξ for some ϕ ∈ CSr(R) and ξ ∈ Mr,n, where ‖ξ‖2 = 1 and ξ has a right
inverse.

We claim that ϕ is a matrix extreme point. To see this, assume that ϕ is written
as a proper matrix convex combination ϕ =

∑
i γ

∗
i ϕiγi with ϕi ∈ CSri(R) and

γi ∈ Mri,r for i = 1, . . . , k. Set ti = ‖γiξ‖22, and observe that∑
i

ti =
∑

i

‖γiξ‖22 =
∑

i

Tr(ξ∗γ∗i γiξ) = Tr(ξ∗ξ) = ‖ξ‖22 = 1,

and that ti 6= 0, since both γi and ξ have right inverses. Thus we can write ϕ̄ as
the proper convex combination

ϕ̄ = ξ∗ϕξ =
∑

i

ξ∗γ∗i ϕiγiξ =
∑

i

ti
(γiξ)∗

‖γiξ‖2 ϕi
(γiξ)
‖γiξ‖2 .

Since ϕ̄ is extreme, this means that ξ∗ϕξ = ‖γiξ‖−2
2 (γiξ)∗ ϕi (γiξ), and using that

ξ has a right inverse, we get that

ϕ‖γiξ‖22 = γ∗i ϕiγi

for i = 1, . . . , k. Since ϕ and ϕi are unital, this in particular implies that

Ir‖γiξ‖22 = γ∗i γi.

Therefore γi‖γiξ‖−1
2 is an isometry, and since γi is known to be surjective, we

have that r = r1 = · · · = rk, and γi‖γiξ‖−1
2 is a unitary implementing a unitary

equivalence between ϕ and ϕi. Hence ϕ is a matrix extreme point.

Using the representation theorem of the previous section we may extend the
above result to general compact matrix convex sets.

Lemma 4.5. Let K = (Kn) be a compact matrix convex set in a locally convex
space V . If v̄ is an extreme point of ∆n(K), then there exist a matrix extreme point
v ∈ Kr for some r ∈ N and a right invertible element ξ ∈ Mr,n with ‖ξ‖2 = 1 such
that

v̄ = ξ∗vξ.

Proof. By Proposition 3.5 (2) there exists an operator system R and a matrix
affine homeomorphism θ = (θn) of CS(R) onto K. It suffices to show that Γ :
∆n(CS(R)) → ∆n(K) given by

Γ(ξ∗ϕξ) = ξ∗θr(ϕ)ξ

for ϕ ∈ CSr(R) and ξ ∈ Mr,n satisfying ‖ξ‖2 = 1, is a well-defined continuous
affine surjection. If this is so, and v̄ ∈ ∆n(K) is an extreme point, then Γ−1(v̄) is
a compact face of ∆n(CS(R)). By Krein-Milman, this set has an extreme point,
which is also an extreme point of ∆n(CS(R)). The conclusion now follows by
applying Lemma 4.4, and the observation that θ preserves matrix extreme points.

To see that Γ is well-defined, first observe that if ν is an isometry chosen as in
(3), then

ξ∗θr(ϕ)ξ = ξ∗νν∗θr(ϕ)νν∗ξ = ξ∗νθs(ν∗ϕν)ν∗ξ.
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We may therefore assume without loss of generality that ξ is right invertible. If
ξ∗ϕξ = η∗ψη with ψ ∈ CSt(R) and η ∈ Mt,n, then using that ϕ and ψ are unital
we see that ηξ−1 is an isometry. Thus

θr(ϕ) = θr((ηξ−1)∗ψ(ηξ−1)) = (ηξ−1)∗θt(ψ)(ηξ−1),

or ξ∗θr(ϕ)ξ = η∗θt(ψ)η, which shows that Γ is well-defined.
It is immediate that Γ is affine and surjective. To see that Γ is also continuous,

consider a convergent net

ξ∗αϕαξα → ξ∗ϕξ

in ∆(CS(R)) with ϕα ∈ CSrα(R) and ξα ∈ Mrα,n. Set ηα = ξαξ
−1 ∈ Mrα,r, and

observe that since all maps are unital,

η∗αηα → Ir.

If ηα = να|ηα| is the polar decomposition of ηα, this means that |ηα| is surjective
from some step, and hence that να is an isometry. Moreover, as να − ηα → 0,

ν∗αϕανα = η∗αϕαηα + (να − ηα)∗ϕανα + η∗αϕα(να − ηα) → ϕ.

By the continuity of θr,

η∗αθrα(ϕα)ηα = |ηα|θr(ν∗αϕανα)|ηα| → Irθr(ϕ)Ir = θr(ϕ),

or, equivalently,

Γ(ξ∗αϕαξα) = ξ∗αθrα(ϕα)ξα → ξ∗θr(ϕ)ξ = Γ(ξ∗ϕξ),

and we are done.

It would be tempting to assume that ∆n(K) is preserved under matrix affine
homeomorphisms of K, but we see from the proof above that the situation is not
that simple.

Proof of Theorem 4.3. Let K = (Kn) be a compact matrix convex set, and let
∂K = (∂Kn) be the collection of matrix extreme points. Since ∂K1 coincides with
the usual extreme points, ∂K is non-empty, and we clearly have co(∂K) ⊂ K.
We may assume that 0 ∈ co(∂K) without loss of generality by translating Kn by
v0 ⊗ In for some v0 ∈ ∂K1.

For the converse inclusion, assume that there exists v0 ∈ Kn\co(∂K)n. By
the matricial separation theorem, Theorem 1.6, there exists a continuous linear
mapping Φ : V → Mn such that

Re Φr(v) ≤ In ⊗ Ir(5)

for all v ∈ co(∂K)r and r ∈ N, and

Re Φn(v0) 6≤ In ⊗ In.(6)

Φ induces a continuous linear functional F : Mn(V ) → C satisfying

F (η∗vξ) = 〈Φr(v)ξ | η〉
for all v ∈ Mr(V ) and ξ, η ∈ Mr,n, simultaneously considered as vectors in Crn.
If v̄ is an extreme point of ∆n(K), then, by Lemma 4.5, we may write v̄ = ξ∗vξ
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where v ∈ ∂Kr and ξ ∈ Mr,n with ‖ξ‖2 = 1 and r ≤ n. By (5), we therefore get
that

ReF (v̄) = ReF (ξ∗vξ) = Re〈Φr(v)ξ | ξ〉
≤ 〈In ⊗ Irξ | ξ〉 = ‖ξ‖22 = 1.

for all extreme points v̄ of ∆n(K). Since ∆n(K) is compact by (4), the Krein-
Milman theorem implies that

ReF (∆n(K)) ≤ 1.

This, in turn, implies that for any unit vector ξ ∈ Crn and v ∈ Kr,

Re〈Φr(v)ξ | ξ〉 = ReF (ξ∗vξ) ≤ 1,

i.e., Re Φr(v) ≤ In ⊗ Ir, contradicting (6). Hence K = co(∂K).

We remark that an inspection of the above proof reveals that only matrix extreme
points in Kr for r ≤ n are necessary to generate Kn.

The key idea of the above proof is to use the matricial separation theorem and
the correspondence between linear functionals on Mn(V ) and the linear mappings
V → Mn to reduce the matricial problem to a scalar one in Mn(V ). This naturally
leads to introducing the convex set ∆n(K) and establishing a connection between
the matrix extreme points of K and the extreme points of ∆n(K), which allows us
to use the classical Krein-Milman theorem.

The converse result, which says that the extreme points are contained in any
closed set with closed convex hull equal to the compact convex set in question, is
usually considered an integral part of the classical Krein-Milman theorem. Morenz
proved a similar condition for his structural elements in the C∗-convexity case in
Mn ([17, Theorem 4.5]). We present a similar condition in the matrix convexity case
to document that the situation in our Krein-Milman theorem is actually optimal.

Theorem 4.6. Let K be a compact matrix convex set in a locally convex space V ,
and let S = (Sn) be a collection of closed subsets Sn ⊂ Kn such that ν∗Smν ⊂ Sn

for all isometries ν ∈ Mm,n. If co(S) = K, then

∂K ⊂ S.

We note that the condition that S be closed under isometries is actually nec-
essary. In the case, say, where K = CS(A) for some C∗-algebra A, we saw in
Example 2.3 that ∂K consists of all pure matrix states. Using the fact that the
minimal Stinespring representation of a pure matrix state is irreducible (cf. [2]),
it easily follows that the pure matrix states are closed under isometries. One may
therefore remove elements from the isometric orbit of a pure matrix state and still
have them generate the whole matrix state space, but there is no canonical way of
choosing which pure states to exclude.

The proof of the above theorem follows more or less by reversing the proof of
Theorem 4.3. In this respect the lemma below is the converse to Lemma 4.4

Lemma 4.7. Let R be an operator system. Given a matrix extreme point ϕ ∈
CSn(R) and an invertible element ξ ∈ Mn satisfying ‖ξ‖2 = 1, then

ϕ̄ = ξ∗ϕξ

is an extreme point in ∆n(CS(R)).
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Proof. Assume that ϕ ∈ CSn(R) is a matrix extreme point, and that ξ ∈ Mn

satisfying ‖ξ‖2 = 1 is invertible. We wish to prove that ϕ̄ = ξ∗ϕξ is an extreme
point in ∆n(CS(R)). Given a proper convex combination

ξ∗ϕξ = tξ∗1ϕ1ξ1 + (1− t)ξ∗2ϕ2ξ2

with ϕ1 ∈ CSr(R), ϕ2 ∈ CSs(R), right invertible elements ξ1 ∈ Mr,n, ξ2 ∈ Ms,n

satisfying ‖ξ1‖2, ‖ξ2‖2 = 1, and 0 < t < 1, then

ϕ = t(ξ1ξ−1)∗ϕ1(ξ1ξ−1) + (1− t)(ξ2ξ−1)∗ϕ2(ξ2ξ−1).

This is a proper matrix convex combination since ϕ, ϕ1, and ϕ2 are unital, ξ1, ξ2
are right invertible, and ξ is invertible. Hence n = r = s, and we have unitaries u1,
u2 ∈ Mn such that ϕ1 = u∗1ϕu1 and ϕ2 = u∗2ϕu2, i.e.,

ϕ = t(u1ξ1ξ
−1)∗ϕ(u1ξ1ξ

−1) + (1− t)(u2ξ2ξ
−1)∗ϕ(u2ξ2ξ

−1).

If we define the matrix state ψ : Mn → Mn by

ψ(α) = t(u1ξ1ξ
−1)∗α(u1ξ1ξ

−1) + (1− t)(u2ξ2ξ
−1)∗α(u2ξ2ξ

−1)

for α ∈ Mn, then the above equation says that

ϕ = ψ ◦ ϕ.
We claim that this implies that ψ = id. The operator system ϕ(R) in Mn is
irreducible, because otherwise ϕ is unitarily equivalent to a diagonal matrix of
matrix states, contradicting that ϕ is matrix extreme. The claim now follows from
Proposition 1.5.

Since ψ = id, the uniqueness part of Choi’s description of completely positive
maps ([4, Remark 4]) implies that

√
t(u1ξ1ξ

−1) =
√
sλ1In,

√
1− t(u2ξ2ξ

−1) =
√

1− sλ2In

for 0 ≤ s ≤ 1 and λ1, λ2 ∈ C satisfying |λ1|, |λ2| = 1. But t = s since

t = t‖ξ1‖22 = Tr((
√
tu1ξ1)∗(

√
tu1ξ1)) = Tr(s(λ1ξ)∗(λ1ξ)) = s‖ξ‖22 = s.

Hence u1ξ1ξ
−1 = λ1In, and so

ξ∗1ϕ1ξ1 = ξ∗1u
∗
1ϕu1ξ1 = (λ1ξ)∗ϕ(λ1ξ) = ξ∗ϕξ.

Similarly, ξ∗2ϕ2ξ2 = ξ∗ϕξ, and we are done.

As extreme points are not necessarily preserved under affine surjections the
method of Lemma 4.5 does not lead to an extension of the above lemma to general
compact matrix convex sets. Luckily, Lemma 4.7 is all we need.

Proof of Theorem 4.6. By Proposition 3.5 (2) we may assume that K = CS(R)
for some operator system R, as the statement of the theorem is preserved under
matrix affine homeomorphism.

We begin by proving that ∆n(CS(R)) is the closed convex hull L of ∆n(S) by
reversing the argument in the proof of Theorem 4.3. Clearly L ⊂ ∆n(CS(R)).

For the converse, assume that ϕ̄0 ∈ ∆n(CS(R))\L. Then there exist a weakly
continuous linear functional F : Mn(R∗) → C and λ ∈ R such that

ReF (ϕ̄) ≤ λ < ReF (ϕ̄0)
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for all ϕ̄ ∈ ∆n(S). If F corresponds to the weakly continuous linear mapping
Φ : R∗ → Mn, as in the proof of Theorem 4.3, and if we write ϕ̄0 = ξ∗0ϕ0ξ0 with
ϕ0 ∈ Kr0 and ξ0 ∈ Mr0,n satisfying ‖ξ0‖2 = 1, then the above is equivalent to

Re〈Φr(ϕ)ξ | ξ〉 ≤ λ < Re〈Φr0(ϕ0)ξ0 | ξ0〉
for all r ∈ N, ϕ ∈ Sr, and ξ ∈ Mr,n satisfying ‖ξ‖2 = 1. Since K = CS(R) = co(S),
this implies that

Re Φr(Kr) ≤ λIrn

for all r ∈ N, contradicting that ϕ0 ∈ Kr0 .
Hence ∆n(CS(R)) is the closed convex hull of ∆n(S). By Krein-Milman, this

implies that the extreme points of ∆n(CS(R)) are contained in the closure of
∆n(S). Since S is closed under isometries, (4) also holds for ∆n(S). Hence ∆n(S)
is also closed. From this we claim to be able to show that ∂CS(R) ⊂ S.

Let ϕ ∈ ∂CSn(R). Choosing an arbitrary invertible element ξ ∈ Mn satisfying
‖ξ‖2 = 1, Lemma 4.7 shows that ϕ̄ = ξ∗ϕξ is an extreme point in ∆n(CS(R)). By
the above, we may find η∗ψη ∈ ∆n(S) such that ϕ̄ = η∗ψη with ψ ∈ Sr, i.e.,

ϕ = (ηξ−1)∗ψ(ηξ−1).

In particular, (ηξ−1)∗(ηξ−1) = In. Since S is closed under isometries, this shows
that ϕ ∈ Sn.

We wish to conclude with a few remarks about the often mentioned connections
with C∗-convexity. It is important to observe that the C∗-convexity Krein-Milman
theorems of Farenick and Morenz do not follow immediately from our work. In
both cases additional technical results from their papers are needed. If K = (Kn)
is a compact matrix convex set, then we know that any element in Kn can be
approximated by matrix convex combinations

∑
i γ

∗
i viγi of matrix extreme points

vi ∈ Kni for i = 1, . . . , n and ni ≤ n. Even though v1, . . . , vn are C∗-extreme, they
need not lie in Kn. We therefore need to alter the matrix convex combination to
include C∗-extreme points in Kn, i.e., we wish to write

γ∗i viγi =
[
γ∗i 0

] [
v 0
0 ∗

] [
γi

0

]
such that [

v 0
0 ∗

]
∈ Kn

is C∗-extreme. In the case of a compact matrix convex set in C, [17, Corollary 5.3]
shows how to choose the missing entry, whereas for the matrix state spaces of a
C∗-algebra the choice is given by [9, Theorem 3.3]. With these additional results
the corresponding C∗-convexity versions of Krein-Milman follow.
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