The Krein-Milman theorem in operator convexity
HTML articles powered by AMS MathViewer
- by Corran Webster and Soren Winkler
- Trans. Amer. Math. Soc. 351 (1999), 307-322
- DOI: https://doi.org/10.1090/S0002-9947-99-02364-8
- PDF | Request permission
Abstract:
We generalize the Krein-Milman theorem to the setting of matrix convex sets of Effros-Winkler, extending the work of Farenick-Morenz on compact C$^*$-convex sets of complex matrices and the matrix state spaces of C$^*$-algebras. An essential ingredient is to prove the non-commutative analogue of the fact that a compact convex set $K$ may be thought of as the state space of the space of continuous affine functions on $K$.References
- Erik M. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57, Springer-Verlag, New York-Heidelberg, 1971. MR 0445271, DOI 10.1007/978-3-642-65009-3
- William B. Arveson, Subalgebras of $C^{\ast }$-algebras, Acta Math. 123 (1969), 141β224. MR 253059, DOI 10.1007/BF02392388
- William Arveson, Subalgebras of $C^{\ast }$-algebras. II, Acta Math. 128 (1972), no.Β 3-4, 271β308. MR 394232, DOI 10.1007/BF02392166
- Man Duen Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10 (1975), 285β290. MR 376726, DOI 10.1016/0024-3795(75)90075-0
- Man Duen Choi and Edward G. Effros, Injectivity and operator spaces, J. Functional Analysis 24 (1977), no.Β 2, 156β209. MR 0430809, DOI 10.1016/0022-1236(77)90052-0
- Kenneth R. Davidson, A proof of the boundary theorem, Proc. Amer. Math. Soc. 82 (1981), no.Β 1, 48β50. MR 603599, DOI 10.1090/S0002-9939-1981-0603599-3
- D. R. Farenick, $C^*$-convexity and matricial ranges, Canad. J. Math. 44 (1992), no.Β 2, 280β297. MR 1162344, DOI 10.4153/CJM-1992-019-1
- D. R. Farenick and Phillip B. Morenz, $C^\ast$-extreme points of some compact $C^\ast$-convex sets, Proc. Amer. Math. Soc. 118 (1993), no.Β 3, 765β775. MR 1139466, DOI 10.1090/S0002-9939-1993-1139466-7
- Douglas R. Farenick and Phillip B. Morenz, $C^*$-extreme points in the generalised state spaces of a $C^*$-algebra, Trans. Amer. Math. Soc. 349 (1997), no.Β 5, 1725β1748. MR 1407488, DOI 10.1090/S0002-9947-97-01877-1
- Ichiro Fujimoto, $\textrm {CP}$-duality for $C^\ast$- and $W^\ast$-algebras, J. Operator Theory 30 (1993), no.Β 2, 201β215. MR 1305504
- Edward G. Effros and Soren Winkler, Matrix convexity: operator analogues of the bipolar and Hahn-Banach theorems, J. Funct. Anal. 144 (1997), no.Β 1, 117β152. MR 1430718, DOI 10.1006/jfan.1996.2958
- Alan Hopenwasser, Robert L. Moore, and V. I. Paulsen, $C^{\ast }$-extreme points, Trans. Amer. Math. Soc. 266 (1981), no.Β 1, 291β307. MR 613797, DOI 10.1090/S0002-9947-1981-0613797-5
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623β627. MR 13
- Richard I. Loebl, A remark on unitary orbits, Bull. Inst. Math. Acad. Sinica 7 (1979), no.Β 4, 401β407. MR 558249
- Richard I. Loebl and Vern I. Paulsen, Some remarks on $C^{\ast }$-convexity, Linear Algebra Appl. 35 (1981), 63β78. MR 599846, DOI 10.1016/0024-3795(81)90266-4
- Christian Le Merdy, On the duality of operator spaces, Canad. Math. Bull. 38 (1995), no.Β 3, 334β346. MR 1347307, DOI 10.4153/CMB-1995-049-9
- Phillip B. Morenz, The structure of $C^\ast$-convex sets, Canad. J. Math. 46 (1994), no.Β 5, 1007β1026. MR 1295129, DOI 10.4153/CJM-1994-058-0
- Colin E. Sutherland, Classifying actions of groups on von Neumann algebras, Miniconferences on harmonic analysis and operator algebras (Canberra, 1987) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 16, Austral. Nat. Univ., Canberra, 1988, pp.Β 317β328. MR 954008
- Norberto Salinas, Extensions of $C^*$-algebras and essentially $n$-normal operators, Bull. Amer. Math. Soc. 82 (1976), no.Β 1, 143β146. MR 633372, DOI 10.1090/S0002-9904-1976-13999-7
- R. R. Smith and J. D. Ward, Matrix ranges for Hilbert space operators, Amer. J. Math. 102 (1980), no.Β 6, 1031β1081. MR 595006, DOI 10.2307/2374180
- S. Winkler, Matrix convexity, Ph. D. thesis, UCLA, 1996.
- Gerd Wittstock, On matrix order and convexity, Functional analysis: surveys and recent results, III (Paderborn, 1983) North-Holland Math. Stud., vol. 90, North-Holland, Amsterdam, 1984, pp.Β 175β188. MR 761380, DOI 10.1016/S0304-0208(08)71474-9
Bibliographic Information
- Corran Webster
- Affiliation: Department of Mathematics, University of California, Los Angeles, California 90095
- Address at time of publication: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Email: Corran.Webster@math.tamu.edu
- Soren Winkler
- Affiliation: University of Wales, Swansea, Singleton Park, Swansea SA2 8PP, UK
- Email: SWI@simcorp.dk
- Received by editor(s): January 22, 1997
- Additional Notes: The first author was supported by the NSF and the second author by the EPSRC and the EU
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 307-322
- MSC (1991): Primary 47D20; Secondary 46A55, 46L89
- DOI: https://doi.org/10.1090/S0002-9947-99-02364-8
- MathSciNet review: 1615970