The nilpotence height of $P_t^s$ for odd primes
HTML articles powered by AMS MathViewer
- by Ismet Karaca
- Trans. Amer. Math. Soc. 351 (1999), 547-558
- DOI: https://doi.org/10.1090/S0002-9947-99-01906-6
- PDF | Request permission
Abstract:
K. G. Monks has recently shown that the element $P^{s}_{t}$ has nilpotence height $2[\frac {s}{t}] + 2$ in the mod $2$ Steenrod algebra. Here the method and result are generalized to show that for an odd prime $p$ the element $P^{s}_{t}$ has nilpotence height $p[\frac {s}{t}] + p$ in the mod $p$ Steenrod algebra.References
- J. F. Adams and H. R. Margolis, Modules over the Steenrod algebra, Topology 10 (1971), 271–282. MR 294450, DOI 10.1016/0040-9383(71)90020-6
- J. F. Adams and H. R. Margolis, Sub-Hopf-algebras of the Steenrod algebra, Proc. Cambridge Philos. Soc. 76 (1974), 45–52. MR 341487, DOI 10.1017/s0305004100048714
- Donald W. Anderson and Donald M. Davis, A vanishing theorem in homological algebra, Comment. Math. Helv. 48 (1973), 318–327. MR 334207, DOI 10.1007/BF02566125
- Dan Arnon, Monomial bases in the Steenrod algebra, J. Pure Appl. Algebra 96 (1994), no. 3, 215–223. MR 1303282, DOI 10.1016/0022-4049(94)90099-X
- D.P. Carlisle and R.M.W. Wood, On an Ideal Conjecture in the Steenrod Algebra, preprint (1994).
- Donald M. Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 44 (1974), 235–236. MR 328934, DOI 10.1090/S0002-9939-1974-0328934-1
- D.M. Davis, On the height of $Sq^{2^{n}}$, preprint (1985).
- Andrew M. Gallant, Excess and conjugation in the Steenrod algebra, Proc. Amer. Math. Soc. 76 (1979), no. 1, 161–166. MR 534410, DOI 10.1090/S0002-9939-1979-0534410-8
- Brayton Gray, Homotopy theory, Pure and Applied Mathematics, Vol. 64, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. An introduction to algebraic topology. MR 0402714
- Leif Kristensen, On a Cartan formula for secondary cohomology operations, Math. Scand. 16 (1965), 97–115. MR 196740, DOI 10.7146/math.scand.a-10751
- H. R. Margolis, Spectra and the Steenrod algebra, North-Holland Mathematical Library, vol. 29, North-Holland Publishing Co., Amsterdam, 1983. Modules over the Steenrod algebra and the stable homotopy category. MR 738973
- John Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150–171. MR 99653, DOI 10.2307/1969932
- Kenneth G. Monks, Nilpotence in the Steenrod algebra, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1-2, 401–416. Papers in honor of José Adem (Spanish). MR 1317590
- Kenneth G. Monks, The nilpotence height of $P^s_t$, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1297–1303. MR 1301039, DOI 10.1090/S0002-9939-96-03150-4
- Judith H. Silverman, Conjugation and excess in the Steenrod algebra, Proc. Amer. Math. Soc. 119 (1993), no. 2, 657–661. MR 1152292, DOI 10.1090/S0002-9939-1993-1152292-8
- Judith H. Silverman, Hit polynomials and the canonical antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 123 (1995), no. 2, 627–637. MR 1254854, DOI 10.1090/S0002-9939-1995-1254854-8
- Philip D. Straffin Jr., Identities for conjugation in the Steenrod algebra, Proc. Amer. Math. Soc. 49 (1975), 253–255. MR 380796, DOI 10.1090/S0002-9939-1975-0380796-3
- G. Walker and R. M. W. Wood, The nilpotence height of $\textrm {Sq}^{2^n}$, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1291–1295. MR 1307571, DOI 10.1090/S0002-9939-96-03203-0
- G.Walker and R.M.W. Wood, The Nilpotence Height of $P^{p^{n}}$, preprint (1995).
- R. M. W. Wood, A note on bases and relations in the Steenrod algebra, Bull. London Math. Soc. 27 (1995), no. 4, 380–386. MR 1335290, DOI 10.1112/blms/27.4.380
- R.M.W. Wood, Differential Operators and the Steenrod Algebra, preprint (1995).
Bibliographic Information
- Ismet Karaca
- Affiliation: Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015
- Address at time of publication: Department of Mathematics, Ege University, Bornova, Izmir 35100, Turkey
- Email: karaca@fenfak.ege.edu.tr
- Received by editor(s): May 16, 1996
- Additional Notes: I would like to thank sincerely my PhD. adviser Professor Donald M. Davis for every piece of advice and guidance. This paper would not exist without his help.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 547-558
- MSC (1991): Primary 55S10, 55S05; Secondary 57T05
- DOI: https://doi.org/10.1090/S0002-9947-99-01906-6
- MathSciNet review: 1407704