The stability of the equilibrium of reversible systems
HTML articles powered by AMS MathViewer
- by Bin Liu
- Trans. Amer. Math. Soc. 351 (1999), 515-531
- DOI: https://doi.org/10.1090/S0002-9947-99-01965-0
- PDF | Request permission
Abstract:
In this paper, we consider the system \[ \dot x=a(t)y^{2m+1}+f_1(x,y,t),\quad \dot y=-b(t)x^{2n+1}+f_2(x,y,t),\] where $m,n\in \mathbf {Z}_+$, $m+n\ge 1$, $a(t)$ and $b(t)$ are continuous, even and 1-periodic in the time variable $t$; $f_1$ and $f_2$ are real analytic in a neighbourhood of the origin $(0,0)$ of $(x,y)$-plane and continuous 1-periodic in $t$. We also assume that the above system is reversible with respect to the involution $G\colon (x,y)\mapsto (-x,y)$. A sufficient and necessary condition for the stability in the Liapunov sense of the equilibrium $(x,y)=(0,0)$ is given.References
- Lamberto Cesari, Asymptotic behavior and stability problems in ordinary differential equations, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 16, Springer-Verlag, New York-Heidelberg, 1971. MR 0350089
- R. Dieckerhoff and E. Zehnder, Boundedness of solutions via the twist-theorem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 1, 79–95. MR 937537
- Bin Liu, The stability of the equilibrium of a conservative system, J. Math. Anal. Appl. 202 (1996), no. 1, 133–149. MR 1402592, DOI 10.1006/jmaa.1996.0307
- Wilhelm Magnus and Stanley Winkler, Hill’s equation, Dover Publications, Inc., New York, 1979. Corrected reprint of the 1966 edition. MR 559928
- J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1962 (1962), 1–20. MR 147741
- Jürgen Moser, Stable and random motions in dynamical systems, Annals of Mathematics Studies, No. 77, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973. With special emphasis on celestial mechanics; Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J. MR 0442980
- Rafael Ortega, The stability of the equilibrium of a nonlinear Hill’s equation, SIAM J. Math. Anal. 25 (1994), no. 5, 1393–1401. MR 1289144, DOI 10.1137/S003614109223920X
- M. B. Sevryuk, Reversible systems, Lecture Notes in Mathematics, vol. 1211, Springer-Verlag, Berlin, 1986. MR 871875, DOI 10.1007/BFb0075877
- Carl Ludwig Siegel and Jürgen K. Moser, Lectures on celestial mechanics, Die Grundlehren der mathematischen Wissenschaften, Band 187, Springer-Verlag, New York-Heidelberg, 1971. Translation by Charles I. Kalme. MR 0502448
Bibliographic Information
- Bin Liu
- Affiliation: Department of Mathematics, Peking University, Beijing 100871, China
- Email: bliu@pku.edu.cn
- Received by editor(s): March 17, 1995
- Received by editor(s) in revised form: December 4, 1995
- Additional Notes: Research was supported by the NNSF of China
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 515-531
- MSC (1991): Primary 58F13
- DOI: https://doi.org/10.1090/S0002-9947-99-01965-0
- MathSciNet review: 1422614