Projective structures with discrete holonomy representations
HTML articles powered by AMS MathViewer
- by Hiroshige Shiga and Harumi Tanigawa
- Trans. Amer. Math. Soc. 351 (1999), 813-823
- DOI: https://doi.org/10.1090/S0002-9947-99-02043-7
- PDF | Request permission
Abstract:
Let $K(X)$ denote the set of projective structures on a compact Riemann surface $X$ whose holonomy representations are discrete. We will show that each component of the interior of $K(X)$ is holomorphically equivalent to a complex submanifold of the product of Teichmüller spaces and the holonomy representation of every projective structure in the interior of $K(X)$ is a quasifuchsian group.References
- Lipman Bers, Holomorphic families of isomorphisms of Möbius groups, J. Math. Kyoto Univ. 26 (1986), no. 1, 73–76. MR 827159, DOI 10.1215/kjm/1250520965
- C. J. Earle, I. Kra, and S. L. Krushkal′, Holomorphic motions and Teichmüller spaces, Trans. Amer. Math. Soc. 343 (1994), no. 2, 927–948. MR 1214783, DOI 10.1090/S0002-9947-1994-1214783-6
- D. Drasin, C. J. Earle, F. W. Gehring, I. Kra, and A. Marden (eds.), Holomorphic functions and moduli. II, Mathematical Sciences Research Institute Publications, vol. 11, Springer-Verlag, New York, 1988. MR 955827
- William M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984), no. 2, 200–225. MR 762512, DOI 10.1016/0001-8708(84)90040-9
- William M. Goldman, Projective structures with Fuchsian holonomy, J. Differential Geom. 25 (1987), no. 3, 297–326. MR 882826
- Dennis A. Hejhal, Monodromy groups and linearly polymorphic functions, Acta Math. 135 (1975), no. 1, 1–55. MR 463429, DOI 10.1007/BF02392015
- Dennis Johnson and John J. Millson, Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984) Progr. Math., vol. 67, Birkhäuser Boston, Boston, MA, 1987, pp. 48–106. MR 900823, DOI 10.1007/978-1-4899-6664-3_{3}
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- Irwin Kra, A generalization of a theorem of Poincaré, Proc. Amer. Math. Soc. 27 (1971), 299–302. MR 301189, DOI 10.1090/S0002-9939-1971-0301189-7
- Irwin Kra, Deformations of Fuchsian groups, Duke Math. J. 36 (1969), 537–546. MR 265582
- Irwin Kra, Deformations of Fuchsian groups. II, Duke Math. J. 38 (1971), 499–508. MR 285734
- Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407, DOI 10.1007/978-1-4613-8652-0
- Bernard Maskit, On a class of Kleinian groups, Ann. Acad. Sci. Fenn. Ser. A I 442 (1969), 8. MR 0252638
- Hiroshige Shiga, Projective structures on Riemann surfaces and Kleinian groups, J. Math. Kyoto Univ. 27 (1987), no. 3, 433–438. MR 910228, DOI 10.1215/kjm/1250520657
- Zbigniew Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111 (1991), no. 2, 347–355. MR 1037218, DOI 10.1090/S0002-9939-1991-1037218-8
- G. Reeb, Équations différentielles et analyse non classique (d’après J.-L. Callot (Oran)), Proceedings of the IV International Colloquium on Differential Geometry (Univ. Santiago de Compostela, Santiago de Compostela, 1978) Cursos Congr. Univ. Santiago de Compostela, vol. 15, Univ. Santiago de Compostela, Santiago de Compostela, 1979, pp. 240–245 (French). MR 569325
- H. Tanigawa, Grafting, harmonic maps and projective structures on surfaces, J. Differential Geometry 47 (1997), 399–419.
- —, Divergence of projective structures and lengths of measured laminations, (preprint).
Bibliographic Information
- Hiroshige Shiga
- Affiliation: Department of Mathematics, Tokyo Institute of Technology, Tokyo 152 Japan
- MR Author ID: 192109
- Email: shiga@math.titech.ac.jp
- Harumi Tanigawa
- Affiliation: Graduate School of Polymathematics, Nagoya University, Nagoya 464-01 Japan
- Email: harumi@math.nagoya-u.ac.jp
- Additional Notes: Research at MSRI is supported by NSF grant #DMS–9022140
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 813-823
- MSC (1991): Primary 32G15; Secondary 30F10
- DOI: https://doi.org/10.1090/S0002-9947-99-02043-7
- MathSciNet review: 1443890