Conjugacy classes of $SU(h,\mathcal O_S)$ in $SL(2,\mathcal O_S)$
HTML articles powered by AMS MathViewer
- by Donald G. James
- Trans. Amer. Math. Soc. 351 (1999), 825-835
- DOI: https://doi.org/10.1090/S0002-9947-99-02066-8
- PDF | Request permission
Abstract:
Let $K$ be a quadratic extension of a global field $F$, of characteristic not two, and $\mathcal {O}_S$ the integral closure in $K$ of a Dedekind ring of $S$-integers $\mathfrak {O}_S$ in $F$. Then $PSL(2, \mathcal {O}_S)$ is isomorphic to the spinorial kernel $Oโ(L)$ for an indefinite quadratic $\mathfrak {O}_S$-lattice $L$ of rank 4. The isomorphism is used to study the conjugacy classes of unitary groups $PSU(h,\mathcal {O}_S)$ of primitive odd binary hermitian matrices $h$ under the action of $PSL(2, \mathcal {O}_S)$.References
- Ronald Jacobowitz, Hermitian forms over local fields, Amer. J. Math. 84 (1962), 441โ465. MR 150128, DOI 10.2307/2372982
- D. G. James, On the structure of orthogonal groups over local rings, Amer. J. Math. 95 (1973), 255โ265. MR 330316, DOI 10.2307/2373784
- Donald G. James, Orbits in unimodular Hermitian lattices, Trans. Amer. Math. Soc. 332 (1992), no.ย 2, 849โ860. MR 1089419, DOI 10.1090/S0002-9947-1992-1089419-6
- D. G. James and C. Maclachlan, Fuchsian subgroups of Bianchi groups, Trans. Amer. Math. Soc. 348 (1996), no.ย 5, 1989โ2002. MR 1348863, DOI 10.1090/S0002-9947-96-01606-6
- C. Maclachlan, Fuchsian subgroups of the groups $\textrm {PSL}_2(O_d)$, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp.ย 305โ311. MR 903873
- C. Maclachlan and A. W. Reid, Parametrizing Fuchsian subgroups of the Bianchi groups, Canad. J. Math. 43 (1991), no.ย 1, 158โ181. MR 1108918, DOI 10.4153/CJM-1991-009-1
- J. J. Price, On a property of orthogonal polynomials, Michigan Math. J. 10 (1963), 151โ156. MR 152811
- L. N. Vaserลกteฤญn, The group $SL_{2}$ over Dedekind rings of arithmetic type, Mat. Sb. (N.S.) 89(131) (1972), 313โ322, 351 (Russian). MR 0435293
- L. Ya. Vulakh, Classification of maximal Fuchsian subgroups of some Bianchi groups, Canad. Math. Bull. 34 (1991), no.ย 3, 417โ422. MR 1127768, DOI 10.4153/CMB-1991-067-5
- L. Ya. Vulakh, Maximal Fuchsian subgroups of extended Bianchi groups, Number theory with an emphasis on the Markoff spectrum (Provo, UT, 1991) Lecture Notes in Pure and Appl. Math., vol. 147, Dekker, New York, 1993, pp.ย 297โ310. MR 1219343
Bibliographic Information
- Donald G. James
- Affiliation: Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
- Email: james@math.psu.edu
- Received by editor(s): January 24, 1996
- Received by editor(s) in revised form: February 20, 1997
- Additional Notes: The author was supported by NSF grant DMS-95-00533.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 825-835
- MSC (1991): Primary 11E57, 11F06, 20G30
- DOI: https://doi.org/10.1090/S0002-9947-99-02066-8
- MathSciNet review: 1451605