The nonarchimedean theta correspondence for $\mathrm {GSp}(2)$ and $\mathrm {GO}(4)$
HTML articles powered by AMS MathViewer
- by Brooks Roberts
- Trans. Amer. Math. Soc. 351 (1999), 781-811
- DOI: https://doi.org/10.1090/S0002-9947-99-02126-1
- PDF | Request permission
Abstract:
In this paper we consider the theta correspondence between the sets $\operatorname {Irr} (\operatorname {GSp} (2,k))$ and $\operatorname {Irr} (\operatorname {GO} (X))$ when $k$ is a nonarchimedean local field and $\dim _{k} X =4$. Our main theorem determines all the elements of $\operatorname {Irr} (\operatorname {GO} (X))$ that occur in the correspondence. The answer involves distinguished representations. As a corollary, we characterize all the elements of $\operatorname {Irr} (\operatorname {O} (X))$ that occur in the theta correspondence between $\operatorname {Irr} (\operatorname {Sp} (2,k))$ and $\operatorname {Irr} (\operatorname {O} (X))$. We also apply our main result to prove a case of a new conjecture of S.S. Kudla concerning the first occurrence of a representation in the theta correspondence.References
- I. N. Bernšteĭn and A. V. Zelevinskiĭ, Representations of the group $GL(n,F),$ where $F$ is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), no. 3(189), 5–70 (Russian). MR 0425030
- P. Cartier, Representations of $p$-adic groups: a survey, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–155. MR 546593
- William Casselman, On the representations of $\textrm {SL}_{2}(k)$ related to binary quadratic forms, Amer. J. Math. 94 (1972), 810–834. MR 318401, DOI 10.2307/2373760
- Michel Cognet, Représentation de Weil et changement de base quadratique, Bull. Soc. Math. France 113 (1985), no. 4, 403–457 (French, with English summary). MR 850776
- Yuval Z. Flicker, On distinguished representations, J. Reine Angew. Math. 418 (1991), 139–172. MR 1111204, DOI 10.1515/crll.1991.418.139
- Stephen S. Gelbart, Automorphic forms on adèle groups, Annals of Mathematics Studies, No. 83, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975. MR 0379375
- S. S. Gelbart and A. W. Knapp, $L$-indistinguishability and $R$ groups for the special linear group, Adv. in Math. 43 (1982), no. 2, 101–121. MR 644669, DOI 10.1016/0001-8708(82)90030-5
- P. Gérardin and J.-P. Labesse, The solution of a base change problem for $\textrm {GL}(2)$ (following Langlands, Saito, Shintani), Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 115–133. MR 546613
- S. Gelbart, J. Rogawski, and D. Soudry, On periods of cusp forms and algebraic cycles for $\textrm {U}(3)$, Israel J. Math. 83 (1993), no. 1-2, 213–252. MR 1239723, DOI 10.1007/BF02764643
- Jeff Hakim, Distinguished $p$-adic representations, Duke Math. J. 62 (1991), no. 1, 1–22. MR 1104321, DOI 10.1215/S0012-7094-91-06201-0
- Michael Harris and Stephen S. Kudla, The central critical value of a triple product $L$-function, Ann. of Math. (2) 133 (1991), no. 3, 605–672. MR 1109355, DOI 10.2307/2944321
- Michael Harris, Stephen S. Kudla, and William J. Sweet, Theta dichotomy for unitary groups, J. Amer. Math. Soc. 9 (1996), no. 4, 941–1004. MR 1327161, DOI 10.1090/S0894-0347-96-00198-1
- G. Harder, R. P. Langlands, and M. Rapoport, Algebraische Zyklen auf Hilbert-Blumenthal-Flächen, J. Reine Angew. Math. 366 (1986), 53–120 (German). MR 833013
- Roger Howe and I. I. Piatetski-Shapiro, Some examples of automorphic forms on $\textrm {Sp}_{4}$, Duke Math. J. 50 (1983), no. 1, 55–106. MR 700131
- Michael Harris, David Soudry, and Richard Taylor, $l$-adic representations associated to modular forms over imaginary quadratic fields. I. Lifting to $\textrm {GSp}_4(\textbf {Q})$, Invent. Math. 112 (1993), no. 2, 377–411. MR 1213108, DOI 10.1007/BF01232440
- Stephen S. Kudla, On the local theta-correspondence, Invent. Math. 83 (1986), no. 2, 229–255. MR 818351, DOI 10.1007/BF01388961
- Stephen S. Kudla and Stephen Rallis, A regularized Siegel-Weil formula: the first term identity, Ann. of Math. (2) 140 (1994), no. 1, 1–80. MR 1289491, DOI 10.2307/2118540
- Colette Mœglin, Marie-France Vignéras, and Jean-Loup Waldspurger, Correspondances de Howe sur un corps $p$-adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987 (French). MR 1041060, DOI 10.1007/BFb0082712
- O. T. O’Meara, Introduction to quadratic forms, Die Grundlehren der mathematischen Wissenschaften, Band 117, Springer-Verlag, New York-Heidelberg, 1971. Second printing, corrected. MR 0347768
- Dipendra Prasad, Trilinear forms for representations of $\textrm {GL}(2)$ and local $\epsilon$-factors, Compositio Math. 75 (1990), no. 1, 1–46. MR 1059954
- Dipendra Prasad, Invariant forms for representations of $\textrm {GL}_2$ over a local field, Amer. J. Math. 114 (1992), no. 6, 1317–1363. MR 1198305, DOI 10.2307/2374764
- Ilya I. Piatetski-Shapiro and David Soudry, $L$ and $\varepsilon$ factors for $\textrm {GSp}(4)$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 505–530 (1982). MR 656034
- Brooks Roberts, The theta correspondence for similitudes, Israel J. Math. 94 (1996), 285–317. MR 1394579, DOI 10.1007/BF02762709
- S. Rallis, On the Howe duality conjecture, Compositio Math. 51 (1984), no. 3, 333–399. MR 743016
- D. Shelstad, Notes on $L$-indistinguishability (based on a lecture of R. P. Langlands), Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 193–203. MR 546618
- Hideo Shimizu, A correction to: “Theta series and automorphic forms on GL$_{2}$” (J. Math. Soc. Japan 24 (1972), 638–683), J. Math. Soc. Japan 26 (1974), 374–376. MR 424699, DOI 10.2969/jmsj/02620374
- Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063, DOI 10.1007/978-3-642-69971-9
- David Soudry, The $L$ and $\gamma$ factors for generic representations of $\textrm {GSp}(4,\,k)\times \textrm {GL}(2,\,k)$ over a local non-Archimedean field $k$, Duke Math. J. 51 (1984), no. 2, 355–394. MR 747870, DOI 10.1215/S0012-7094-84-05117-2
- David Soudry, A uniqueness theorem for representations of $\textrm {GSO}(6)$ and the strong multiplicity one theorem for generic representations of $\textrm {GSp}(4)$, Israel J. Math. 58 (1987), no. 3, 257–287. MR 917359, DOI 10.1007/BF02771692
- Jerrold B. Tunnell, Local $\epsilon$-factors and characters of $\textrm {GL}(2)$, Amer. J. Math. 105 (1983), no. 6, 1277–1307. MR 721997, DOI 10.2307/2374441
- Marie-France Vignéras, Correspondances entre representations automorphes de $\textrm {GL}(2)$ sur une extension quadratique de $\textrm {GSp}(4)$ sur $\textbf {Q}$, conjecture locale de Langlands pour $\textrm {GSp}(4)$, The Selberg trace formula and related topics (Brunswick, Maine, 1984) Contemp. Math., vol. 53, Amer. Math. Soc., Providence, RI, 1986, pp. 463–527 (French). MR 853573, DOI 10.1090/conm/053/853573
- J.-L. Waldspurger, Démonstration d’une conjecture de dualité de Howe dans le cas $p$-adique, $p\neq 2$, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 2, Weizmann, Jerusalem, 1990, pp. 267–324 (French). MR 1159105
Bibliographic Information
- Brooks Roberts
- Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3, Canada
- Address at time of publication: Department of Mathematics, Brink Hall, University of Idaho, Moscow, Idaho 83844-1103
- Email: brooks@member.ams.org
- Received by editor(s): June 3, 1996
- Received by editor(s) in revised form: February 6, 1997
- Additional Notes: During the period of this work the author was a Research Associate with the NSF 1992–1994 special project Theta Functions, Dual Pairs, and Automorphic Forms at the University of Maryland, College Park, and was supported by a Stipendium at the Max-Planck-Institut für Mathematik.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 781-811
- MSC (1991): Primary 11F27; Secondary 22E50
- DOI: https://doi.org/10.1090/S0002-9947-99-02126-1
- MathSciNet review: 1458334