
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 351, Number 2, February 1999, Pages 735–780
S 0002-9947(99)02168-6

ON SIEGEL MODULAR FORMS OF
HALF-INTEGRAL WEIGHTS AND JACOBI FORMS

KOICHI TAKASE

Abstract. We will establish a bijective correspondence between the space
of the cuspidal Jacobi forms and the space of the half-integral weight Siegel
cusp forms which is compatible with the action of the Hecke operators. This
correspondence is based on a bijective correspondence between the irreducible
unitary representations of a two-fold covering group of a symplectic group and
a Jacobi group (that is, a semidirect product of a symplectic group and a
Heisenberg group). The classical results due to Eichler-Zagier and Ibukiyama
will be reconsidered from our representation theoretic point of view.

Introduction

Jacobi forms are closely related with modular forms of half-integral weights.
Such a relation is one of three main steps in the proof of Saito-Kurokawa lifting
(other steps are the Fourier-Jacobi expansion of Siegel cusp forms in the Maass
space, and the Shimura correspondence between integral and half-integral weight
modular forms) [E-Z]. Similar relations between Jacobi forms of higher degree and
Siegel modular forms of half-integral weights are studied by [Ibu]. The purpose
of this paper is to study these relations from the representation theoretic point of
view.

The basic idea is quite simple. For the sake of simplicity, we will consider the
relations over the real number field (in this paper, we will work also over p-adic fields
and over the adele ring). Let (V,D) be a symplectic R-space with a polarization
V = W ⊕W ′ (that is, D is a non-degenerate skew-symmetric R-bilinear form on
finite dimensional R-vector space V , and both W and W ′ are R-vector subspaces
of V such that D(W,W ) = D(W ′,W ′) = 0). Let L and L′ be Z-lattices of W and
W ′, respectively, such that L ⊕ L′ is the self-dual with respect to D. Let G be a
locally compact unimodular group and

ρ : G→ Sp(V )

be a continuous group homomorphism. Let Γ be a closed unimodular subgroup
of G such that ρ(Γ) ⊂ Sp(L) (see 1.2.4 for the notation). Let S̃p(V ) be a non-
trivial two-fold covering group of Sp(V ) with covering mapping $, and let G̃ =
G×Sp(V ) S̃p(V ) be a fiber product with

ρ̃ : G̃→ S̃p(V ), $G : G̃→ G
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the canonical projections. Let H [V ] = V × R be the Heisenberg group associated
with (V,D) (see 1.2.1). The symplectic group Sp(V ) acts on H [V ] as an auto-
morphism group. Let GJ = G n H [V ] be the semi-direct product with respect
to the action of G on H [V ] via ρ. Put G̃J = G̃ n H [V ] where G̃ acts on H [V ]
via $G. Set Γ̃ = $−1

G (Γ) and S̃p(L) = $−1(Sp(L)). Then ρ̃(Γ̃) ⊂ S̃p(L). Put
ΓJ = Γ n (L⊕ L′ × R) which is a closed unimodular subgroup of GJ .

Let ω be the Weil representation of S̃p(V ) which is realized on L2(W ). A unitary
representation ωρ = ω ◦ ρ̃ is extended to an irreducible unitary representation of
G̃J which is also denoted by ωρ. We will consider the simplest case of

ωρ|Z(H[V ]) = e∞

where e∞(t) = exp 2π
√−1t is a character of Z(H [V ]) = R. Take any unitary

representation τ of G̃. Let τJ be the composition of τ with the canonical projection
of G̃J onto G̃. Then the correspondence

τ 7→ π = τJ ⊗ ω(1)

is a bijection between the unitary equivalence classes of the unitary representations
τ of G̃ and the unitary equivalence classes of the unitary representations π of G̃J
such that π|Z(H[V ]) = e∞. Also π is irreducible if and only if τ is irreducible.

For example, let us consider an induced representation Ind(GJ ,ΓJ ;α⊗ ξ). Here
α is a continuous unitary character (1-dimensional unitary representation) of Γ and
ξ is a character of (L⊕ L′)× R defined by

ξ(λ) = e∞(t+
1
2
D(x, y)) for λ = ((x, y), t) with x ∈ L, y ∈ L′, t ∈ R.

The character α⊗ ξ of ΓJ is defined by

(α⊗ ξ)(γ, λ) = α(γ)ξ(λ).

Considering Ind(GJ ,ΓJ ;α⊗ξ) as a representation of G̃J via its canonical projection
onto GJ , we have

Ind(GJ ,ΓJ ;α⊗ ξ) = Ind(G̃, Γ̃; ε−1
Γ ⊗ α̃)J ⊗ ωρ.(2)

Here α̃ is the composition of α with the covering mapping Γ̃ → Γ, and εΓ is a
character of Γ̃ defined as follows. Let us define a theta series θϕ associated with a
Schwartz function ϕ ∈ S(W ) by

θϕ(σ) =
∑
`∈L

(ω(σ)ϕ)(`) for all σ ∈ S̃p(V ).

Then there exists a character εL,∞ of S̃p(L) such that

θϕ(γσ) = εL,∞(γ)θϕ(σ) for all γ ∈ S̃p(L).

Put εΓ = εL,∞ ◦ ρ̃. See 1.2.4 for the details.
Let τ and π be irreducible unitary representations of G̃ andGJ , respectively, such

that π = τJ⊗ω̌ρ where ω̌ρ is the contragredient representation of ωρ. Then (2) shows
that the π̌-isotypic component Ind(GJ ,ΓJ ;α⊗ξ; π̌) of Ind(GJ ,ΓJ ;α⊗ξ) corresponds
to the τ̌ -isotypic component Ind(G̃, Γ̃; ε−1

Γ ⊗ α̃; τ̌ ) of Ind(G̃, Γ̃; ε−1
Γ ⊗ α̃). Roughly

speaking, the space of automorphic forms on GJ associated with π corresponds to
the space of the automorphic forms on G̃ associated with τ . How explicitly can the
correspondence be described?
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Suppose that G is a reductive real Lie group with maximal compact subgroup
K such that G/K is a bounded symmetric domain, and ρ is an (H1)-group homo-
morphism (that is, the differential of ρ is an (H1)-homomorphism in the sense of
[Sat5]). (H1)-group homomorphisms are important for the study of the families of
abelian varieties [Kug], [Mum], [Sat4]. In this case, if τ is a holomorphic discrete
series of G̃, then π = τJ ⊗ ω̌ρ is a “holomorphic discrete series” of GJ (that is, a
holomorphic induction on GJ from K n Z(H [V ]), see Remark 1.4.6).

Now let (G,H) be a reductive dual pair in Sp(V ) such that H is compact and
ρ be the inclusion of G into Sp(V ). This is a typical example of an (H1)-group
homomorphism. Let τ be a holomorphic discrete series of G̃ and put π = τ ⊗ ω̌ρ.
We know that ω̌ρ has a minimal K̃ = $−1

G (K)-type δ0 with multiplicity one [K-V].
Let δ′ be the minimal K̃-type of τ . Then π has a minimal K-type δ = δ′ ⊗ δ0
with multiplicity one. This is a phenomenon which is special for the holomorphic
discrete series. Now the δ̌-isotypic component of Ind(GJ ,ΓJ ;α⊗ ξ; π̌) is the space
of (generalized) Jacobi forms on GJ of weight δ, index 1 and with a character α.
On the other hand, the δ̌′-isotypic component of Ind(G̃, Γ̃; ε−1

Γ ⊗ α̃; τ̌) is the space of
holomorphic automorphic forms on G of “half-integral weight” δ′ with a character
ε−1
Γ ⊗ α̃. A minimal K̃-type vector of ωρ produces a classical theta series. So a

Jacobi form and a half-integral weight modular form correspond to each other by
cutting off the theta series, or by integrating against the theta series. This is the
correspondence studied by [E-Z] or [Ibu] (see §3.3). In this paper, we will consider
the case of

G = symplectic group, H = compact orthogonal group.

Other cases are treated similarly. Although we work only over the rational number
field, the cases over the totally real number fields can be treated without any change
in the arguments.

This paper consists of three chapters and two appendices.
In Chapter one, we will work over every local field Qp (p ≤ ∞). In §1.1, we

will set up the fundamental framework of this paper. We will define a generalized
Jacobi group and set the fundamental assumptions (A), (B) and (C) of 1.1.2. In
§1.2, we will recall basic facts on the Weil representation. In §1.3, we will establish
the correspondence (1) of unitary representations for our generalized Jacobi group
(Theorem 1.3.3). In §1.4, we will work over the real number field R = Q∞. This
case is connected directly with the classical treatment of automorphic forms. In
fact, based upon the representation theoretic consideration described above, we
will establish a bijection between cuspidal Jacobi forms (of degree n with a matrix
index) and Siegel cusp forms of half-integral weights of degree n (Theorem 1.4.10).

In Chapter two, we will work only over finite local fields Qp (p < ∞). The
correspondence of automorphic forms given by [E-Z] or [Ibu] is compatible with
the action of Hecke operators. This means that we need a C-algebra isomorphism
between the algebra HJ,p of Hecke operators on the finite local Jacobi group GJ,p
and the algebra Hp of Hecke operators on the finite local covering group G̃p of
Gp. Such an isomorphism was given by Shintani [Shn] (see Proposition 2.2.1). The
C-algebras HJ,p and Hp have canonical C-bases which consist of the characteristic
functions of suitable double cosets in GJ,p and G̃p, respectively (see 2.1.4 and
2.1.5). We will show that the representation matrix, with respect to these canonical
C-bases, of the C-algebra isomorphism given by Shintani is diagonal (Theorem
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2.3.2). A C-algebra homomorphism between HJ,p and Hp reflects a correspondence
between the zonal spherical functions on GJ,p and on G̃p. This correspondence of
zonal spherical functions contains the correspondence (1) for the class-one unitary
representations ofGJ,p and of G̃p. Here, the zonal spherical function associated with
the Weil representation studied in §2.2 plays the fundamental role. In particular,
Proposition 2.2.2 is a key proposition of Chapter two. In §2.4, we will consider the
class-one unitary representations of GJ,p and G̃p. These results will be used in the
global theory of Chapter three.

In Chapter three, we will work over the adele ring. We will establish the corre-
spondence (1) of unitary representations and the identity (2) over the adele ring (or
for the adelized groups). Then choosing carefully the local representations, we will
show the global correspondence of automorphic forms (Theorem 3.1.10). In §3.2,
we will consider the infinite local theory of §1.4 with regard to the Hecke operators.
We will show that the infinite local correspondence of automorphic forms given in
Theorem 1.4.8 (or Theorem 1.4.10 with classical terminology) is compatible with
the action of Hecke operators (Theorem 3.2.6). Finally in §3.3, we will reconsider
the result of [E-Z] and [Ibu] from our point of view.

In the two appendices, we will recall some basic facts which are used throughout
this paper. In Appendix A, we will recall some basic facts on the space of auto-
morphic forms associated with an irreducible unitary representation of a locally
compact unimodular group. See [Tak1] for the details. In Appendix B, we will re-
call basic facts on the zonal spherical functions with central character on a locally
compact group.

Notation. The ring of the rational integers is denoted by Z. The field of the rational
numbers (resp. real numbers, complex numbers) is denoted by Q (resp. R, C).

For any finite or infinite place p of Q, the p-adic completion of Q is denoted by
Qp. The closure of Z in Qp is denoted by Zp (so Z∞ = Z). A Haar measure on
Qp is normalized so that vol(Zp) = 1 if p <∞, vol([0, 1]) = 1 if p = ∞. The adele
ring of Q is denoted by QA. Let e =

⊗
p ep be the unique continuous character of

QA which is trivial on Q and e∞(x) = exp 2π
√−1x. For a Q-vector space V , put

Vp = V ⊗Q Qp and VA = V ⊗Q QA. For a Z-module M , put Mp = M ⊗Z Zp.
For K-vector spaces U and V over a field K, we will denote by HomK(U, V ) the

K-vector space consisting of the K-linear mappings from U to V . Set EndK(V ) =
HomK(V, V ). For all u ∈ U and a ∈ HomK(U, V ), denoted by ua ∈ V is the image
of u under a. Let us denote by GLK(V ) the group of the K-linear isomorphisms
of V onto itself. Take R-vector spaces U , V and set UC = U ⊗R C. The complex
conjugation of u ∈ UC over U is denoted by u. For any a ∈ HomC(UC, VC), define
a ∈ Hom(UC, VC) by ua = ua.

For a linear algebraic group G over Q, we will denote by G(K) the group of
the K-rational points for an over-field K of Q. Put GQ = G(Q) and Gp = G(Qp)
(p ≤ ∞).

For a topological space X , denoted by Cc(X) is the complex vector space con-
sisting of the compactly supported continuous C-valued functions on X .

Throughout this paper, an induced representation is defined as follows. Let G
be a locally compact unimodular group and H be a closed unimodular subgroup of
G. Then the coset space H\G has a G-invariant measure dġ. Let ξ be a unitary
representation of H with representation space Eξ. Let | · |ξ be the norm of the
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complex Hilbert space Eξ. Let Cc(G,H ; ξ) be a complex vector space consisting of
the Hξ-valued continuous functions ϕ on G such that

(1) ϕ(hg) = ξ(h)ϕ(g) for all h ∈ H ,
(2) the support of ϕ is compact modulo H .

Then the induced representation π = Ind(G,H ; ξ) is the completion of Cc(G,H ; ξ)
with respect to the norm

|ϕ|2 =
∫
H\G

|ϕ(g)|2ξdġ for ϕ ∈ Cc(G,H ; ξ)

with the action (π(g)ϕ)(x) = ϕ(xg) for ϕ ∈ Cc(G,H ; ξ) and g ∈ G.

Chapter 1. Jacobi Group and its Unitary Representations

1.1. Jacobi group.

1.1.1. Let (V, [ , ]) be a symplectic Q-space with a polarization V = W ⊕ W ′.

An element σ ∈ EndQ(V ) is denoted by σ =
[
a b
c d

]
with a ∈ EndQ(W ), b ∈

HomQ(W,W ′), c ∈ HomQ(W ′,W ) and d ∈ EndQ(W ′) such that (w,w′)σ = (wa +
w′c, wb+w′d) for (x, y) ∈ V = W×W ′. Let (U, 〈, 〉) be a regular quadratic Q-space.
Let L ⊂W , L′ ⊂W ′ and M ⊂ U be Z-lattices such that [L,L′] ⊂ Z.

Put V = HomQ(U, V ). For any x ∈ V, there exists a unique ıx ∈ HomQ(V, U)
such that

〈v ·ıx, u〉 = [v, ux], for all v ∈ V , u ∈ U.
For any s ∈ EndQ(U), there exists a unique ts ∈ EndQ(U) such that

〈u ·ts, u′〉 = 〈u, u′s〉, for all u, u′ ∈ U.
Put

U = SymQ(U) = {s ∈ EndQ(U) | ts = s}.

For all x, y ∈ V, put D(x, y) =
1
2
(x ·ıy− y ·ıx), which is an element of U because

we have t(x ·ıy) = −y ·ıx. Then a group law on H [V, D] = V× U is defined by

(x, s) · (y, t) = (x+ y, s+ t+
1
2
D(x, y)).

The center of H [V, D] is identified with U by (0, s) = s.
The group of the symplectic similitudes on V

GSp(V ) = {σ ∈ GLQ(V ) | [xσ, yσ] = ν(σ)[x, y], for all x, y ∈ V , ν(σ) ∈ Q×}
acts on H [V, D] from the right as an automorphism group by (x, s)σ = (xσ, ν(σ)s).

Let G and GJ be algebraic groups over Q such that

GQ = Sp(V ) = {σ ∈ GSp(V ) | ν(σ) = 1} and GJ,Q = Sp(V ) nH [V, D],

respectively. The semi-direct product is defined by the action of Sp(V ) on H [V, D]
described above. We have an identification Z(GJ )Q = U by (1, (0, s)) = s for the
center Z(GJ) of GJ .
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1.1.2. Take an S ∈ U such that detS 6= 0. Put DS(x, y) = tr(S ·D(x, y)). Then
DS is a symplectic form on V. Put

W = HomQ(U,W ) ↪→ V, W′ = HomQ(U,W ′) ↪→ V.

Then V = W ⊕ W′ gives a polarization of V with respect to DS , and 〈x, y〉S =
DS(x, y) gives a non-degenerate pairing W×W′ → Q. Put

L = HomZ(M,L) ↪→ W, L′ = HomZ(M,L′) ↪→ W′

by the Q-linear extension. Define a group homomorphism

ρ : Sp(V ) → Sp(V) by xρ(σ) = xσ.

We will pose the following three conditions throughout this paper:

(A) there exists an ortho-normal Q-basis of U with respect to 〈 , 〉,
(B) S = P ·t P for some P ∈ GLQ(U),
(C) L′ = {y ∈ W | 〈L, y〉S ⊂ Z}.

The conditions (A) and (B) imply that there exists a Q-basis {u1, u2, · · · , um} of
U such that 〈uiS−1, uj〉 = δij . We will fix such a Q-basis {u1, · · · , um} throughout
this paper. Then we have

〈x, y〉S =
m∑
j=1

[ujx, ujy] for all x ∈ W, y ∈ W′.(1.1.2.1)

1.1.3. We will denote by M∗ = {u ∈ U | 〈u,M〉 ⊂ Z} the dual lattice of M . Then
we have

(L⊕ L′) ·tx ⊂M∗ for all x ∈ L⊕ L′.(1.1.3.1)

Put M = {s ∈ U |Ms ⊂M∗} which is a Z-lattice in U. (1.1.3.1) implies that

D(x, y) ∈ 1
2
M for all x, y ∈ L ⊕ L′.

1.1.4. Fix Z-bases {v1, · · · , vn} and {v′1, · · · , v′n} of L and L′, respectively, such
that [vi, v′j ] = δijej with 0 < ej ∈ Z and ej|ej+1. Identify V with the Q-vector
space of the row vectors Q2n with respect to the Q-basis {v1, · · · , vn, v′1, · · · , v′n} of
V . Then

D(v, v′) = vJ tv′ with J =
[

0 X
−X 0

]
, X =

e1 . . .
en

.

Fix a Z-basis {u′1, · · · , u′m} of M , and put S0 = (〈u′i, u′j〉)i,j=1,··· ,m. By means of
the identification U = Qm with respect to {u′1, · · · , u′m}, we have an identification

U = S0Symm(Q) = Symm(Q)S−1
0 , M = Symm(Z)S−1

0 .

Then the condition (C) of 1.1.2 is equivalent to the condition

S−1
0 S ·Mm,n(Z) ·X = Mm,n(Z).(1.1.4.1)

Put v∗i = e−1
i v′i. Then {v∗1 , · · · , v∗n} is a Z-basis of L∗ = {y ∈W ′ | 〈L, y〉 ⊂ Z}, the

dual lattice of L.
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1.1.5. Take a finite place p of Q. Suppose that {u1, · · · , um} is a Zp-basis of the
Zp-lattice Mp. Then the representation matrix of S with respect to {u1, · · · , um}
is equal to S0 = (〈ui, uj〉)i,j=1,··· ,m. The condition (1.1.4.1), which is equivalent to
the condition (C) of 1.1.2, implies that X ∈ GLn(Zp). This means that L∗p = L′p,
or {v∗1 , · · · , v∗n} is a Zp-basis of L′p. Under the same assumption, we have M∗

p =
MpS

−1, and tr(S · s) ∈ Zp for all s ∈Mp.

1.2. Weil representation. In this section, we will recall some basic facts on the
Weil representation. The results are described for Sp(V ). Similar notations are
used for Sp(V).

1.2.1. Fix a finite or infinite place p of Q. The Haar measure dWp(w) on Wp

(resp. dW ′
p
(w′) on W ′

p) is normalized so that vol(Lp) = 1 (resp. vol(L∗p) = 1) if
p < ∞, vol(Wp/Lp) = 1 (resp. vol(W ′

p/L
∗
p) = 1) if p = ∞. A Haar measure on

Vp = Wp ×W ′
p is defined by dVp(w,w′) = dWp(w)dW ′

p
(w′).

Put H [Vp] = Vp×Qp with a group law (v, s) ·(v′, t) = (v+v′, s+t+ 1
2 [v, v′]). It is

a locally compact unimodular group and is called the Heisenberg group associated
with the symplectic Qp-space (Vp, [ , ]). A Haar measure on H [Vp] is defined by
dH[Vp](v, s) = dVp(v)ds. The group of the symplectic similitudes GSp(Vp) acts on
H [Vp] from the right by (v, s)σ = (vσ, ν(σ)s) as an automorphism group.

1.2.2. The Heisenberg group H [Vp] has a unique irreducible unitary representation
Πp such that Πp(0, s) = ep(s) for all s ∈ Qp. In fact Πp is realized on L2(Wp) by

(Πp(h)ϕ)(w) = ϕ(w + x)ep

(
s+

1
2
[x, y] + [w, y]

)
(ϕ ∈ L2(Wp))

for h = ((x, y), s) ∈ H [Vp] (x ∈ Wp, y ∈ W ′
p). This realization of Πp on L2(Wp)

is called the Schrödinger model. Let us denote by Aut(L2(Wp)) the group of the
unitary isomorphism of L2(Wp) onto itself. Then Aut(L2(Wp)) is a Hausdorff topo-
logical group with respect to the weakest topology such that Aut(L2(Wp)) 3 T 7→
Tϕ ∈ L2(Wp) is continuous for all ϕ ∈ L2(Wp). Let Mp(Vp) be the closed subgroup
of Gp × Aut(L2(Wp)) (Gp = Sp(Vp)) consisting of the (σ, T ) ∈ Gp ×Aut(L2(Wp))
such that T−1 ◦ Πp(h) ◦ T = Πp(hσ) for all h ∈ H [Vp]. Then Mp(Vp) is a locally
compact group [Igu]. There exists uniquely a continuous group homomorphism
Ψp : Mp(Vp) → C1 such that

1) Ψp(1, λ) = λ2 for all λ ∈ C1 ↪→ Aut(L2(Wp)),

2) Ψp(r(σ)) = (det c,−1)pγp(1)dimV for all σ =
[
a b
c d

]
∈ Gp such that det c 6=

0,

where (∗, ∗)p is the Hilbert symbol and det c = det([v∗i c, v
∗
j ])i,j=1,2,··· ,n. Put r(σ) =

(σ, r0(σ)) ∈Mp(Vp) where

(r0(σ)ϕ)(w)

= | det c|1/2p

∫
Wp

ϕ(wa + w′c)ep

(
1
2
[wa+ w′c, wb+ w′d]− 1

2
[w,w′]

)
dW ′

p
(w′)
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for all ϕ ∈ L2(Wp) ∩ L1(Wp) [Wei]. The Weil number γp(a) for a ∈ Q×
p is defined

as follows. If p = ∞, we put γp(a) = ep

(
1
8
a

|a|
)

, and if p < ∞, we put γp(a) =

Gp(a)/|Gp(a)| with Gp(a) =
∑

x∈ 1
2 Zp/Zp

ep(ax2).

Put G̃p = S̃p(Vp) = Ker(Ψp) which is a locally compact unimodular group. Let
$p : G̃p → Gp be the projection to the first factor. Then (G̃p, $p) is a non-trivial
two-fold covering group of Gp. Let us denote by σ̃ ∈ G̃p an element such that
$p(σ̃) = σ ∈ Gp. Put Ep = Ker($p) = {(1,±1)}. The projection to the second
factor ωp : G̃→ Aut(L2(Wp)) is a unitary representation of G̃p on L2(Wp), which
is called the Weil representation of Gp = Sp(Vp).

1.2.3. PutH [Lp] = (Lp⊕L′p)×Qp which is a closed unimodular subgroup of H [Vp].
Define a unitary character ξp of H [Lp] by ξp((w,w′), s) = ep(s + 1

2 [w,w′]). The
unitary representation (Πp, L

2(Wp)) of H [Vp] is unitarily equivalent to the induced
representation Ind(H [Vp], H [Lp]; ξp). In fact, for any ϕ ∈ Cc(Wp), put

Θϕ(h) =
∫
Lp

ϕ(w + `)ep

(
s+

1
2
[w,w′] + [`, w′]

)
dLp(`) (h = ((w,w′), s) ∈ H [Vp]),

where the Haar measure dLp(`) on Lp is normalized so that vol(Lp) = 1, if p <∞,
or the counting measure, if p = ∞. Then ϕ 7→ Θϕ is extended to a unitary
isomorphism from (Πp, L

2(Wp)) to Ind(H [Vp], H [Lp]; ξp). The realization of Πp as
Ind(H [Vp], H [Lp]; ξp) is called the lattice model.

1.2.4. Let Sp(Lp) be a group consisting of the γ =
[
a b
c d

]
∈ Sp(Vp) such that

1) (Lp ⊕ L′p)γ = Lp ⊕ L′p, and
2) [wa+ w′c, wx + w′] ≡ [w,w′] (mod 2Zp) for all w ∈ Lp and w′ ∈ L′p.

For any γ ∈ Sp(Lp), define a unitary automorphism rLp(γ) of Ind(H [Vp], H [Lp]; ξp)
by

(rLp(γ)ϕ)(h) = ϕ(hγ).

The automorphism rLp(γ) induces a unitary automorphism on L2(Wp) via the
isomorphism given in 1.2.3, which is also denoted by rLp(γ). Then γ 7→ r′Lp

(γ) =
(γ, rLp(γ)) is a continuous group homomorphism of Sp(Lp) to Mp(Vp). If p is an
odd finite place, we have S̃p(Lp) = r′Lp

(Sp(Lp)) ⊂ G̃p. For p = 2 or ∞, put

S̃p(Lp) = $−1
p (Sp(Lp)) ⊂ G̃p. Then S̃p(Lp) is an open compact subgroup of G̃p

for all finite p.
Let us denote by εL,p the unitary character of S̃p(Lp) defined by

γ̃ = (1, εL,p(γ̃)) · r′Lp
(γ) for all γ̃ ∈ S̃p(Lp).

Note that εL,p = 1 for all p 6= 2,∞. In particular, we have

θϕ(γ̃σ̃) = εL,∞(γ̃)θϕ(σ̃) for all γ̃ ∈ S̃p(L), σ̃ ∈ S̃p(V∞)
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and all Schwartz functions ϕ ∈ S(W∞). Here

θϕ(σ̃) =
∑
`∈L

(ω∞(σ̃)ϕ)(`) (σ̃ ∈ S̃p(V∞))

is the theta series associated with ϕ ∈ S(W∞).

1.2.5. Let

H [VA] = VA ×QA =
∏
p≤∞

′
H [Vp]

be the restricted direct product of {H [Vp]}p≤∞ w.r.t. {(Lp⊕L′p)×Zp}2<p<∞. Let
Π be an irreducible unitary representation of H [VA] on L2(WA) defined by

(Π(h)ϕ)(w) = ϕ(w + x)e
(
s+

1
2
[x, y] + [w, y]

)
for h = ((x, y), s) ∈ H [VA].

Then Π is unitarily equivalent to the restricted tensor product of {Πp}p≤∞ with
respect to {ϕLp}p<∞ where ϕLp ∈ L2(Wp) is the characteristic function of Lp in
Wp, so we will identify them.

Let Mp(VA) be the closed subgroup of GA×Aut(L2(WA)) consisting of (σ, T ) ∈
GA × Aut(L2(WA)) such that T−1 ◦ Π(h) ◦ T = Π(hσ) for all h ∈ H [VA]. Then
Mp(VA) is a locally compact group [Igu].

Let G̃A be the restricted direct product of {G̃p}p≤∞ with respect to {S̃p(Lp)}p<∞.
Define a continuous group homomorphism

J : G̃A →Mp(VA) by J((σp, Tp)p≤∞) = ((σp)p≤∞,
⊗
p≤∞

Tp).

Let S̃p(VA) be the image of J which is a closed normal subgroup of Mp(VA) [Wei].
The projection to the second factor

ωA : S̃p(VA) → Aut(L2(WA))

is a unitary representation of S̃p(VA) which is called the global Weil representation.
V × QA is a closed unimodular subgroup of H [VA]. Define a unitary character

ξA of V ×QA by ξA(v, s) = e(s). Put

Θϕ(h) =
∑
`∈W

ϕ(w + `)e
(
s+

1
2
[w,w′] + [`, w′]

)
for h = ((w,w′), s) ∈ H [VA] and any Schwartz-Bruhat function ϕ ∈ S(WA). Then
ϕ 7→ Θϕ is extended to a unitary isomorphism from (Π, L2(WA)) onto the induced
representation Ind(H [VA], V ×QA; ξA).

For any γ ∈ Sp(V ), define a unitary automorphism rW (γ) of Ind(H [VA], V ×
QA; ξA) by (rW (γ)ϕ)(h) = ϕ(hγ). The automorphism rW (γ) induces a unitary
automorphism of L2(WA) via the isomorphism defined above which is also denoted
by rW (γ). Then γ 7→ rQ(γ) = (γ, rW (γ)) is a group homomorphism of Sp(V ) into
S̃p(VA) [Wei]. Put

S̃p(V ) = J−1(rQ(Sp(V )))

which is a discrete subgroup of G̃A.
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1.2.6. We have the following product formula.

Proposition.∏
p≤∞

εp(γ, Tp) = 1 for all (γ, Tp)p≤∞ ∈ S̃p(V ) ∩
(
S̃p(V∞)×

∏
p<∞

S̃p(Lp)

)
.

Proof. For any Schwartz-Bruhat function ϕ ∈ S(WA), put

θϕ(s) =
∑
w∈W

(ωA(s)ϕ)(w) for all s ∈ S̃p(VA).

Then we have [Wei]

θϕ(rQ(γ)s) = θϕ(s) for all γ ∈ Sp(V ), s ∈ S̃p(VA).

If we put θϕ(σ̃) = θϕ(J(σ̃)) for σ̃ ∈ G̃A, then we have

θϕ(γ̃σ̃) = θϕ(σ̃) for all γ̃ ∈ S̃p(V ).

Now set ϕ =
⊗

p≤∞ ϕp where ϕ∞ ∈ S(W∞) is a Schwartz function and, for all
p <∞, ϕp is the characteristic function of Lp in Wp. Then

θϕ(σ̃, 1, 1, · · · ) = θϕ∞(σ̃) for all σ̃ ∈ S̃p(V∞)

(see 1.2.4). Take any

γ̃ = (γ, Tp)p≤∞ ∈ S̃p(V ) ∩
(
S̃p(V∞)×

∏
p<∞

S̃p(Lp)

)
.

By (1.2.4.1), we have

θϕ∞((γ, T∞)σ̃) = εL,∞(γ, T∞)θϕ∞(σ̃) for all σ̃ ∈ S̃p(V∞).

On the other hand, we have

θϕ∞((γ, T∞)σ̃) = θϕ(γ̃ · (σ̃, (γ, Tp)−1
p<∞)) = θϕ(σ̃, (γ, Tp)−1

p<∞)

=
∑
w∈W

(ω∞(σ̃)ϕ∞)(w) ·
∏
p<∞

(ωp(γ, Tp)ϕp)(w)

=
∏
p<∞

εL,p(γ, Tp) · θϕ∞(σ̃).

Then we get the required product formula.

1.3. Unitary representation of Jacobi group.

1.3.1. Fix a finite or infinite place p of Q. We will denote byHS [Vp] the Heisenberg
group associated with the symplectic space (Vp, DS). We have a surjective group
homomorphism (x, t) 7→ (x, tr(S · t)) of H [Vp, D] onto HS [Vp]. Then H [Vp, D] has
a unique irreducible unitary representation ΠS,p such that ΠS,p(0, t) = ep(tr(S · t))
for all t ∈ Up. Let Hp be the representation space of ΠS,p. ΠS,p is realized on
Hp = L2(Wp) by

(ΠS,p(h)ϕ)(w) = ep

(
tr(S · t) +

1
2
〈x, y〉S + 〈w, y〉S

)
ϕ(w + x) (ϕ ∈ L2(Wp))
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for h = ((x, y), t) ∈ H [Vp, D] (x ∈ Wp, y ∈ W′
p). It is unitarily isomorphic to

Hp = Ind(H [Vp, D],Λp; ξS,p) where Λp = (Lp ⊕ L′p)× Up and

ξS,p(λ) = ep

(
tr(S · t) +

1
2
〈x, y〉S

)
(λ = ((x, y), t) ∈ Λp) is a unitary character of Λp. The unitary intertwining map-
ping ϕ 7→ Θϕ is given by

Θϕ(h) =
∫
Lp

ϕ(x + `)ep

(
tr(S · t) +

1
2
〈x, y〉S + 〈`, y〉S

)
dLp(`)

for any ϕ ∈ Cc(Wp) and h = ((x, y), t) ∈ H [Vp, D]. The Weil representation ωp
of Sp(Vp) is realized on Hp. Define a character χS,p of Z(H [Vp, D]) = Up by
χS,p(t) = ep(tr(S · t)) for t ∈ Up.

1.3.2. We shall define a continuous group homomorphism

ρ̃p : G̃p → S̃p(Vp).

First of all, identify L2(Wp) with the completed m-fold tensor product
⊗̂m

L2(Wp)
by

(
m⊗
j=1

ϕj)(x) =
m∏
j=1

ϕj(ujx) for ϕj ∈ L2(Wp), x ∈ Wp.

Because of (1.1.2.1), we have a continuous group homomorphism (σ, T ) 7→ (ρ(σ),
T⊗m) of Mp(Vp) to Mp(Vp). Using (1.1.2.1) again, we have

r0(ρ(σ)) = r0(σ)⊗m for all σ =
[
a b
c d

]
∈ Sp(Vp) such that det c 6= 0.

Then we have Ψp(r(ρ(σ))) = Ψp(r(σ))m. Now we will define the group homomor-
phism

ρ̃p : G̃p → S̃p(Vp) by ρ̃p(σ, T ) = (ρ(σ), T⊗m).

1.3.3. Put G̃J,p = G̃p n H [Vp, D], where G̃p acts on H [Vp, D] via the covering
map $p : G̃p → Gp. Define an irreducible unitary representation ωS,p of G̃J,p by
ωS,p(σ̃, h) = ωp(ρ̃p(σ̃)) ◦ΠS,p(h) (σ̃ ∈ G̃p and h ∈ H [Vp, D]).

For any unitary representation π of G̃p, let us denote by πJ the composition of
π with the canonical projection of G̃J,p onto G̃p. Then we have

Theorem. π 7→ πJ⊗ωS,p gives a bijection between the set of the unitary equivalence
classes of the unitary representations of G̃p and the set of the unitary equivalence
classes of the unitary representations τ of G̃J,p such that τ(t) = χS,p(t) for all
t ∈ Z(G̃J,p) = Up. πJ ⊗ ωS,p is irreducible if and only if π is. πJ ⊗ ωS,p is
square-integrable modulo the center if and only if π is square-integrable.

This theorem is proved by an argument similar to that in [Sat2].

Remark. The unitary representations of GJ,p are regarded as unitary representa-
tions of G̃J,p via the canonical projection G̃J,p → GJ,p. Then π 7→ πJ ⊗ ωS,p gives
a bijection between the set of the unitary equivalence classes of the unitary rep-
resentations π of G̃p such that π|Ep = νmp and the set of the unitary equivalence

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



746 KOICHI TAKASE

classes of the unitary representations τ of GJ,p such that τ(t) = χS,p(t) for all
t ∈ Z(GJ,p) = Up.

1.4. Infinite local theory. In this section, we will develop our theory over R =
Q∞.

1.4.1. Let Γ be a discrete subgroup of G∞ = Sp(V∞) such that ρ(Γ) ⊂ Sp(L).
An example of such a discrete subgroup is given in 1.4.11. Let α be a unitary
character of Γ. Put Γ̃ = $−1

∞ (Γ) ⊂ G̃∞. Then ρ̃∞(Γ̃) ⊂ S̃p(L). The invariant mea-
sure on Γ̃\G̃∞ is induced from the invariant measure on Γ\G∞ via the topological
isomorphism Γ̃\G̃∞→̃Γ\G∞. A closed unimodular subgroup Λ∞ = (L⊕L′)×U∞
of H [V∞, D] is stable under the action of Γ via ρ∞ : G∞ → Sp(V∞). The
semi-direct product ΓJ = Γ n Λ∞ is a closed unimodular subgroup of GJ,∞ =
Sp(V∞) nH [V∞, D]. Define a unitary character α⊗ ξS,∞ of ΓJ by

(α⊗ ξS,∞)(γ, λ) = α(γ) · ξS,∞(λ).

Consider the induced representation π = Ind(GJ,∞,ΓJ ;α ⊗ ξS,∞). Let us denote
by π̃ and α̃ the composition of π and α with the canonical projections G̃J,∞ →
GJ,∞ and Γ̃ → Γ, respectively. Then we have π̃ = Ind(G̃J,∞, Γ̃J ; α̃ ⊗ ξS,∞). Put
τ = Ind(G̃∞, Γ̃; α̃ ⊗ ε−1

Γ ) where εΓ is the composition of εL,∞ with ρ̃ restricted to
Γ̃ (see 1.2.4 for the definition of εL,∞). Then we have

Theorem. τJ ⊗ωS,∞ is unitarily equivalent to π̃ by the unitary mapping ϕ⊗ψ 7→
ϕ� ψ defined by

(ϕ� ψ)(σ, h) = (τ(σ)ϕ)(1) · (ωS,∞(σ, h)ψ)(1).

Here ωS,∞ is realized on Ind(H [V∞, D],Λ∞; ξS,∞).

Proof. By a direct calculation, it is easy to see that the C-linear mapping ϕ⊗ψ 7→
ϕ� ψ is GJ,∞-equivariant and |ϕ� ψ| = |ϕ| · |ψ|. Put

θα̃⊗ξS,∞,f (g) =
∫

Γ̃J

(α̃⊗ ξS,∞)(γ−1)f(γg)dγ for f ∈ Cc(G̃J,∞).

For any f1 ∈ Cc(G̃∞) and f2 ∈ Cc(H [V∞, D]), define

f = f1 ⊗ f2 ∈ Cc(G̃J,∞) by f(σ, h) = f1(σ) · f2(hσ−1
).

Then the C-linear span of

{θα̃⊗ξS,∞,f1⊗f2 | f1 ∈ Cc(G̃∞), f2 ∈ Cc(H [V∞, D])}
is dense in Ind(G̃J,∞, Γ̃J ; α̃⊗ ξS,∞). For any ϕ ∈ Cc(G̃∞) and ψ ∈ Cc(H [V∞, D]),
put

θα̃⊗ε−1
Γ ,ϕ(σ) =

∫
Γ̃

(α̃⊗ ε−1
Γ )(γ)−1ϕ(γσ)dγ (σ ∈ G̃∞)

and

θξS,∞,ψ(h) =
∫

Λ∞
ξS,∞(λ)−1ψ(λh)dλ (h ∈ H [V∞, D]),

respectively. Then the C-linear spans of

{θα̃⊗ε−1
Γ ,ϕ | ϕ ∈ Cc(G̃∞)} and {θξS,∞,ψ | ψ ∈ Cc(H [V∞, D])},
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are dense in

Ind(G̃∞, Γ̃; α̃⊗ ε−1
Γ ) and Ind(H [V∞,Λ∞; ξS,∞]),

respectively. Take any f = f1 ⊗ f2 (f1 ∈ Cc(G̃∞), f2 ∈ Cc(H [V∞, D])). Then, for
any g = (σ, hσ) ∈ G̃J,∞, we have

θα̃⊗ξS,∞,f (g) =
∫

Γ̃

dγ

∫
Λ∞

dλ α̃(γ)−1ξS,∞(λ)−1f1(γσ)f2((λh)γ
−1

)

=
∫

Γ̃

dγ α̃(γ)−1f1(γσ)θξS,∞,f2(h
γ−1

)

=
∫

Γ̃

dγ (α̃⊗ ε−1
Γ )(γ−1)f1(γσ)(ωS,∞(γ−1)θξS,∞,f2)(h)

= (ωS,∞(σ)θf,σ)(h)

where

θf,σ(h) =
∫

Γ̃

dγ (α̃⊗ ε−1
Γ )(γ−1)f1(γσ)(ωS,∞(γσ)−1θξS,∞,f2)(h) (h ∈ H [V∞, D])

is an element of Ind(H [V∞, D],Λ∞; ξS,∞). On the other hand, we have

(θα̃⊗ε−1
Γ ,ϕ � θξS,∞,ψ, θα̃⊗ξS,∞,f ) =

∫
G̃∞

dσ

∫
H[V∞,D]

dhϕ(σ)ψ(h)θf,σ(h).

In fact, we have
(θα̃⊗ε−1

Γ ,ϕ � θξS,∞,ψ, θα̃⊗ξS,∞,f )

=
∫

Γ̃\G̃∞
dσ

∫
Λ∞\H[V∞,D]

dh

∫
Γ̃

dγθα̃⊗ε−1
Γ ,ϕ(σ)(ωS,∞(σ)θξS,∞,ψ)(hσ

−1
)

· (α̃⊗ ε−1
Γ )(γ)f1(γσ)(ωS,∞(γ−1)θξS,∞,f2)(hσ

−1)

=
∫

Γ̃\G̃∞
dσ

∫
Γ̃

dγ θα̃⊗ε−1
Γ ,ϕ(γσ)f1(γσ) · (ωS,∞(γσ)θξS,∞,ψ, θξS,∞,f2)

=
∫
G̃∞

dσ θα̃⊗ε−1
Γ ,ϕ(σ)f1(σ) · (ωS,∞(σ)θξS,∞,ψ, θξS,∞,f2).

Here we have
(ωS,∞(σ)θξS,∞,ψ, θξS,∞,f2) = (θξS,∞,ψ, ωS,∞(σ)−1θξS,∞,f2)

=
∫

Λ∞\H[V∞,D]

dh

∫
Λ∞

dλψ(λh)(ωS,∞(σ)−1θξS,∞,f2)(λh)

=
∫
H[V∞,D]

dhψ(h)(ωS,∞(σ)−1θξS,∞,f2)(h).

Now we have
(θα̃⊗ε−1

Γ ,ϕ � θξS,∞,ψ, θα̃⊗ξS,∞,f )

=
∫
G̃∞

dσ

∫
H[V∞,D]

dh

∫
Γ̃

dγ

· (α̃ ⊗ ε−1
Γ )(γ)−1ϕ(γσ)f1(σ)ψ(h)(ωS,∞(σ)−1θξS,∞,f2)(h)

=
∫
G̃∞

dσ

∫
H[V∞,D]

dhϕ(σ)ψ(h)θf,σ(h),
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which is the required formula. Suppose that

(θα̃⊗ε−1
Γ ,ϕ � θξS,∞,ψ, θα̃⊗ξS,∞,f) = 0 for all ϕ ∈ Cc(G̃∞), ψ ∈ Cc(H [V∞, D]).

Then θf,σ is a zero vector in Ind(H [V∞, D],Λ∞; ξS,∞) for all σ ∈ G̃∞. Hence
θα̃⊗ξS,∞,f = 0. So we have an isomorphism

Ind(G̃∞, Γ̃; α̃⊗ ε−1
Γ )J ⊗ Ind(H [V∞, D],Λ∞; ξS,∞) →̃ Ind(G̃J,∞, Γ̃J ; α̃⊗ ξS,∞).

1.4.2. The Siegel upper half space associated with the polarization V = W ⊕W ′

is defined by

HW =
{
z ∈ SymC(WC,W

′
C) | Im(z) ∈ Sym+

R (W∞,W ′
∞)
}
.

HereWC = W∞⊗RC, SymC(WC,W ′
C) is a C-vector space of the z ∈ HomC(WC,W ′

C)
such that [v, wz] = [w, vz] for all v, w ∈ WC. We denote by Sym+

R (W∞,W ′
∞) the

open convex cone of the s ∈ SymC(WC,W ′
C) such that W∞s ⊂W ′∞ and [w,ws] > 0

for all 0 6= w ∈W∞. GJ,∞ acts transitively on HW,J = HW ×W′
C by

g(Z) = (σ(z), (w + xz + y)J(σ, z)−1)

for g = (σ, h) ∈ GJ,∞ with h = ((x, y), t) ∈ H [V∞, D] and Z = (z, w) ∈ HW,J . Here

σ(z) = (az+b)(cz+d)−1 and J(σ, z) = cz+d ∈ GLC(W ′
C) for σ =

[
a b
c d

]
∈ Sp(V∞)

as usual.
A GJ,∞-invariant measure d(z, w) = d(z)dz(w) on HW,J is defined as follows:

d(z) = det(Im z)−(n+1)
∏

1≤i<j≤n
d([vi, vjRe z])

∏
1≤i<j≤n

d([vi, vjIm z]),

where det(Im z) = det([vi, vjIm z])i,j=1,··· ,n is the G∞-invariant measure on HW
and

dz(w) = det(Im z)−mdW′∞(Rew)dW′∞(Imw).

We have

dz′(w′) = dz(w) for (z′, w′) = g(z, w) with g ∈ GJ,∞.
We have also

dz(xz + y) = dW∞(x)dW′∞(y) for all x ∈ W∞, y ∈ W′
∞.(1.4.2.1)

Put

ηS(g;Z) = e∞

{
tr(S · t) +

1
2
〈x, xσ(z) + y〉S + 〈x,wJ(σ, z)−1〉S

−1
2
〈wtc, wJ(σ, z)−1〉S

}
for g = (σ, hσ) ∈ GJ,∞ with h = ((x, y), t) ∈ H [V∞, D], σ =

[
a b
c d

]
∈ G∞ and

Z = (z, w) ∈ HW,J . Then ηS(g;Z) is a factor of automorphy:

ηS(gg′;Z) = ηS(g; g′(Z))ηS(g′;Z) for all g, g′ ∈ GJ,∞.
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Put

κS(Z ′, Z) = e∞

{
1
2
〈(w′ − w)(z′ − z)−1, w′ − w〉S

}
for Z = (z, w), Z ′ = (z′, w′) ∈ HW,J . Then we have

κS(g(Z ′), g(Z)) = ηS(g;Z ′)κS(Z ′, Z)ηS(g;Z)

for all g ∈ GJ,∞. Put κS(Z) = κS(Z,Z).

1.4.3. Fix a z0 ∈ HW which defines a maximal compact subgroup

K∞ = {σ ∈ G∞ | σ(z0) = z0} of G∞.

Put βW (σ, τ) = εW (σ; z0, τ(z0)) for all σ, τ ∈ G∞ where

εW (σ; z′, z) = det−1/2

(
σ(z′)− σ(z)

2
√−1

)
· det1/2

(
z′ − z

2
√−1

)
· | detJ(σ, z′)J(σ, z)|−1/2

for σ ∈ G∞ and z, z′ ∈ HW . Here we put

det−1/2T =
∫
W∞

exp(−π[w,wT ])dW∞(w)

for all T ∈ SymC(WC,W ′
C) such that Re(T ) = (T +T )/2 ∈ Sym+

R (W∞,W ′
∞). Then

βW is a C1-valued real analytic 2-cocycle of order two:
(1) βW (τ, δ)βW (στ, δ)−1βW (σ, τδ)βW (σ, τ)−1 = 1 and βE(1, σ) = βW (σ, 1) = 1,
(2) βW (σ, τ)2 =ζW (τ)ζW (στ)−1ζW (σ) where ζW (σ)=det J(σ, z0)/| detJ(σ, z0)|.

Let Mp(W∞) = C1 ×G∞ be a real Lie group with a multiplication law

(ε, σ) · (η, τ) = (εηβW (σ, τ), στ).

Then G̃∞ is identified with a closed subgroup of the (ε, σ) ∈ Mp(W∞) such that
ε2 = ζW (σ)−1, and the covering map is $∞(ε, σ) = σ [Tak3].

For σ̃ = (ε, σ) ∈ G̃∞ and z ∈ HW , put

J 1
2
(σ̃, z) = ε−1εW (σ; z, z0)| det J(σ, z)|1/2

which is real analytic on σ̃ ∈ G̃∞, holomorphic on z ∈ HW and satisfies the relations
[Tak3]

J 1
2
(σ̃τ̃ , z) = J 1

2
(σ̃, τ(z))J 1

2
(τ̃ , z) and J 1

2
(σ̃, z)2 = detJ(σ, z).

Let us denote by δ0 = det
1
2 the character k̃ = (ε, k) 7→ J 1

2
(k̃, z0) = ε−1 of a maximal

compact subgroup K̃∞ = $−1∞ (K∞) of G̃∞.

1.4.4. The Siegel upper half space HW is identified with a subspace of HW by
HW 3 z = [w 7→ wz] ∈ HW. Then the real Lie group Mp(W∞) is defined by
a 2-cocycle βW subordinate to z0 ∈ HW ↪→ HW, and the covering group S̃p(V∞)
is identified with a closed subgroup of Mp(W∞). Under these identifications, the
group homomorphism ρ̃∞ : G̃∞ → S̃p(V∞) is expressed by

ρ̃∞(ε, σ) = (εm, ρ(σ)) for all (ε, σ) ∈ G̃∞ ⊂Mp(W∞).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



750 KOICHI TAKASE

Let Hz0 be a complex Hilbert space consisting of the holomorphic C-valued func-
tions ϕ on W′

C such that

|ϕ|2 =
∫

W′
C

|ϕ(w)|2κS(z0, w)dz0 (e) <∞.

Then the contragredient representation ω̌∞ of the Weil representation ω∞ of S̃p(V∞)
is realized on Hz0 [Tak3]. So the contragredient representation ω̌S,∞ of ωS,∞ is re-
alized also on Hz0 .

1.4.5. Let us define the holomorphic discrete series of G̃∞. Let δC be the irreducible
representation of GLC(W ′

C) of the Young diagram

1 2 · · · · · · · · · `1
1 2 · · · · · · `2

· · · · · ·
1 2 · · · `n

with `1 ≥ `2 ≥ · · · ≥ `n ≥ 0. Let Vδ be the representation space of δC with a
hermitian inner product 〈 , 〉δ such that

〈δC(d)v, v′〉δ = 〈v, δC((Im z0)−1 ·td · Im z0)v′〉δ for all d ∈ GLC(W ′
C) and v, v′ ∈ Vδ.

Then δ(k) = δC(J(k, z0)) is a unitary irreducible representation of K∞. It is also
regarded as a representation of K̃∞ via the projection onto K∞. Put

Kδ(z′, z) = δC

[(
z′ − z

2
√−1

)−1

· Im z0

]
∈ GLC(Vδ) (z, z′ ∈ HW ).

Let Hδ⊗δ−m
0

be a complex Hilbert space consisting of the holomorphic Vδ-valued
functions ϕ on HW such that

|ϕ|2 =
∫

HW

det(Im z)−m/2〈Kδ(z, z)−1ϕ(z), ϕ(z)〉δd(z) <∞.

The action πδ⊗δ−m
0

of G̃∞ on Hδ⊗δ−m
0

is defined by

(πδ⊗δ−m
0

(σ̃)ϕ)(z) = Jδ⊗δ−m
0

(σ̃−1, z)−1ϕ(σ−1(z)) for σ̃ ∈ G̃∞, ϕ ∈ Hδ⊗δ−m
0
.

Here we put

Jδ⊗δ−m
0

(σ̃, z) = δC(J(σ, z))J 1
2
(σ̃, z)−m.

If `n−m/2 > n, then (πδ⊗δ−m
0
, Hδ⊗δ−m

0
) is the irreducible square-integrable unitary

representation, a so-called holomorphic discrete series, of G̃∞ of minimal K̃∞-type
δ⊗ δ−m0 = δ⊗ det−m/2. The square-integrable representation πδ⊗δ−m

0
is integrable

if and only if `n − m/2 > 2n. See Chapter VI, §4 and Chapter IX, §7 of [Knp]
for the construction and the minimal K-type of the holomorphic discrete series of
a connected semi-simple real Lie group. It is easy to show that the construction
of the holomorphic discrete series given in [Knp] is equivalent to our construction.
See [H-S] for the integrable discrete series. The arguments of [Knp] and [H-S] can
be applied to our non-linear Lie group G̃∞.
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1.4.6. Now we will consider the holomorphic discrete series of the Jacobi group
GJ,∞. Let Hδ,S be a complex Hilbert space consisting of the Vδ-valued holomorphic
functions ϕ on HW,J such that

|ϕ|2 =
∫

HW,J

〈Kδ(z, z)−1ϕ(z, w), ϕ(z, w)〉δκS(z, w)d(z, w) <∞.

The action πδ,S of GJ,∞ on Hδ,S is defined by

(πδ,S(g)ϕ)(Z) = Jδ,S(g−1, Z)−1ϕ(g−1(Z))

for g ∈ GJ,∞ and ϕ ∈ Hδ,S . Here we put

Jδ,S(g, Z) = ηS(g;Z)−1Jδ(σ, z)

for g = (σ, h) ∈ GJ,∞ and Z = (z, w) ∈ HW,J .
Then (πδ,S , Hδ,S) is an irreducible unitary representation (possibly Hδ,S = {0}).

Let π̃δ,S be the composition of πδ,S with the covering map of G̃J,∞ onto GJ,∞.
Then we proved in [Tak2] that

Theorem. Suppose `n −m/2 > n.
1) Then (πδ⊗δ−m

0
)J ⊗ ω̌S,∞ is unitarily equivalent to π̃δ,S by the unitary mapping

ϕ⊗ ψ 7→ ϕ� ψ defined by

(ϕ� ψ)(g(Z0)) = Jδ,S(g;Z0)(πδ⊗δ−m
0

(σ̃)−1ϕ)(z0)

· (ω̌S,∞(σ̃, h)−1ψ)(0) · (det Im z0)−m/4

for g = (σ, h) ∈ GJ,∞ and Z0 = (z0, 0) ∈ HW,J .
2) The δ-isotypic component of π̃δ,S is the tensor product of the δ⊗δ−m0 -isotypic

component of πδ⊗δ−m
0

and the δm0 = detm/2-isotypic component of ω̌S,∞. In
particular, the multiplicity of δ in πδ,S is equal to one.

Remark. The coset space GJ,∞/K∞ × U∞ is isomorphic to HW,J by ġ 7→ g(Z0).
Then the induced representation Ind(GJ,∞, K∞ × U∞; δ ⊗ χ−1

S,∞) is realized on a
complex Hilbert space of the locally integrable Vδ-valued functions ϕ on HW,J such
that

|ϕ|2 =
∫

HW,J

〈Kδ(z, z)−1ϕ(z, w), ϕ(z, w)〉δκS(z, w)d(z, w) <∞

with the action

(g · ϕ)(Z) = Jδ,S(g−1;Z)−1ϕ(g−1(Z)) for g ∈ GJ,∞, ϕ ∈ HW,J .

In this sense, πδ,S is a holomorphic induction on GJ,∞ or a holomorphic discrete
series on GJ,∞.

1.4.7. The irreducible unitary representation ωS,∞ of G̃J,∞ has the minimal K̃∞-
type δ−m0 = det−m/2 with multiplicity one ([K-V]). Let us describe the normal
vector in the δ−m0 -isotypic component. Put

ϑS(Z) =
∑
`∈L

e∞

(
1
2
〈`, `z〉S + 〈`, w〉S

)
for Z = (z, w) ∈ HW,J .

Then we have a transformation formula

ϑS ((γ, λ)Z) = ξS,∞(λ)εΓ(γ̃)ηS((γ, λ);Z)−1J 1
2
(γ̃, z)−mϑS(Z)
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for all (γ, λ) ∈ ΓJ = Γ n Λ∞ [Tak3, Th.5.2]. Put

ΘS,∞(g̃) = 2mn/4ηS(g;Z0)J 1
2
(σ̃, z0)−mϑS(g(Z0))

for g̃ = (σ̃, h) ∈ G̃J,∞ = G̃∞ n H [V∞, D] and Z0 = (z0, 0) ∈ HW,J . Here we put
g = (σ, h) ∈ GJ,∞. Then we have a transformation formula

ΘS,∞((γ̃, λ)g̃) = ξS,∞(λ)εΓ(γ̃)ΘS,∞(g̃) for all (γ̃, λ) ∈ Γ̃J = Γ̃ n Λ∞.

If ωS,∞ is realized on L2(W∞), the δ−m0 -isotypic component has a normal base

ψ0(x) = det(2Im z0)m/4e∞

(
1
2
〈x, xz0〉S

)
(x ∈ W∞).

The corresponding vector in Ind(H [W∞, D],Λ∞; ξS,∞) is

Θψ0(h) =
∑
`∈L

ψ0(x+ `)e∞

(
tr(S · t) +

1
2
〈x, y〉S + 〈`, y〉

)
for h = ((x, y), t) ∈ H [V∞, D]. We have

(ωS,∞(g̃)ψ0)(x) = εmηS(g;Z0) det(2Im z)m/4e∞

(
1
2
〈x, xz〉S + 〈x,w〉S

)
for all g̃ = (σ̃, h) ∈ G̃J,∞ with σ̃ = (ε, σ) ∈ G̃∞ and g(Z0) = (z, w) (see the proof
of Th.5.2 in [Tak3]). Then we have a formula

(ωS,∞(g̃)Θψ0)(1) = ΘS,∞(g̃) for all g̃ ∈ G̃J;∞.

1.4.8. Theorem 1.4.1 and Theorem 1.4.6 imply that the π̌δ,S-isotypic component
in Ind(GJ,∞,ΓJ ;α ⊗ ξS,∞) corresponds to the π̌δ⊗δ−m

0
-isotypic component in

Ind(G̃∞, Γ̃; α̃ ⊗ ε−1
Γ ). Such a correspondence induces a correspondence between

the spaces of automorphic forms on GJ,∞ and G̃∞ via the isometry of Appendix
A.3. Let us now describe explicitly the correspondence.

Let us denote by A(ΓJ , α; δ, S) the space of the automorphic forms on GJ,∞
associated with the data

(G,K,Γ, E; ξ, π, δ) = (GJ,∞, K∞,ΓJ ,U∞; (α⊗ ξS,∞)−1, πδ,S, δ)

in the sense of Appendix A.2. Let us also denote by A(Γ̃, α̃; δ⊗det−m/2) the space
of the automorphic forms on G̃∞ associated with the data

(G,K,Γ, E; ξ, π, δ) = (G̃∞, K̃∞, Γ̃, E∞; α̃−1 ⊗ εΓ, πδ⊗δ−m
0
, δ ⊗ δ−m0 ).

Recall that the multiplicity of δ (resp. δ⊗ det−m/2) in πδ,S |K∞ (resp. πδ⊗δ−m
0
|
K̃∞

)
is equal to one. Then we have

Theorem. A C-linear isometry F 7→ fF from A(ΓJ , α; δ, S) onto A(Γ̃, α̃; δ ⊗
det−m/2) is defined by

fF (σ̃) =
∫

Λ∞\H[V∞,D]

F (σ, hσ)ΘS,∞(σ̃, hσ)d(ḣ).

Proof. We have π̃δ,S = πδ⊗δ−m
0

⊗ω̌S,∞ by Theorem 1.4.6. It is proved in [Tak2] that
the irreducible unitary representation πδ,S of GJ,∞ has the minimal K∞-type δ with
multiplicity one which is the tensor product of the δ ⊗ δ−m0 -isotypic component of
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πδ⊗δ−m
0

and the δm0 -isotypic component of ω̌S,∞. For any ϕ ∈ Ind(G̃∞, Γ̃; α̃⊗ ε−1
Γ )

and ψ ∈ Ind(H [V∞, D],Λ∞; ξS,∞) such that |ψ| = 1, we have

ϕ(σ̃) =
∫

Λ∞\H[V∞,D]

(ϕ� ψ)(σ, hσ)(ωS,∞(σ̃, hσ)ψ)(1)d(ḣ)

for all σ̃ ∈ G̃∞. Then we have a C-linear isometry

T : Ind(GJ,∞,ΓJ ;α⊗ ξS,∞; π̌δ,S ; δ̌) →̃ Ind(G̃∞, Γ̃; α̃⊗ ε−1
Γ ; π̌δ⊗δ−m

0
; δ̌ ⊗ δm0 )

defined by

(Tϕ)(σ̃) =
∫

Λ∞\H[V∞,D]

ϕ(σ, hσ)ΘS,∞(σ̃, hσ)d(ḣ), (σ̃ ∈ G̃∞)

for all ϕ ∈ Ind(GJ,∞,ΓJ ;α ⊗ ξS,∞; π̌δ,S ; δ̌). Then the isometry of Appendix A.3
gives the required isometry.

Remark. In §3.2, we will show that the correspondence F 7→ fF is compatible with
the action of the Hecke operators.

1.4.9. We will give a variation of Theorem 1.4.8. For any F ∈ A(ΓJ , α; δ, S), put

F (Z) = Jδ,S(g, Z0)F (g) for Z = g(Z0) ∈ HW,J with g ∈ GJ,∞,
which is a well-defined Vδ-valued function on HW,J .

For any f ∈ A(Γ̃, α̃; δ ⊗ det−m/2), put

f(z) = Jδ⊗δ−m
0

(σ̃, z0)f(σ̃) for z = σ(z0) ∈ HW with σ̃ ∈ G̃∞,

which is a well-defined Vδ-valued function on HW . Then we have

Theorem. For any F ∈ A(ΓJ , α; δ, S), we have

fF (z) = 2mn/4 det(Im z)m/2
∫
Lz\W′

C

F (z, w)ϑS(z, w)κS(z, w)dz(w)

for all z ∈ HW . Here Lz = {xz + y | x ∈ L, y ∈ L′} is a Z-lattice in W′
C.

Proof. Using the identity

|ηS(g;Z0)|2 = κS(g(Z0)) for all g ∈ GJ,∞
and (1.4.2.1), we have

fF (σ̃) =
∫

Λ∞\H[V∞,D]

F (σ, hσ)ΘS,∞(σ̃, hσ)d(ḣ)

= 2mn/4Jδ(σ, z0)−1J 1
2
(σ̃, z0)−m

·
∫

Λ∞\H[V∞,D]

F (h(z, 0))ϑS(h(z, 0))κS(h(z, 0))d(ḣ)

= 2mn/4 det(Im z)m/2Jδ⊗δ−m
0

(σ̃, z0)−1

∫
Lz\W′

C

F (z, w)ϑS(z, w)κS(z, w)dz(w).

Here we put z = σ(z0) ∈ HW . Then we have the required formula.
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1.4.10. We will consider a classical case. Let us suppose that `1 = `2 = · · · = `n =
`. We shall also suppose that Γ is commensurable with

Γ(1) = {σ ∈ Sp(V ) | (L⊕ L′)σ = L⊕ L′}.

Let S`−m
2
(Γ̃, α̃⊗ε−1

Γ ) be the space of Siegel cusp forms of weight `−m

2
with respect

to Γ̃ with character α̃⊗ ε−1
Γ , that is, the C-valued holomorphic functions f on HW

such that

1) f(γ(z)) = α̃⊗ ε−1
Γ (γ̃) · J 1

2
(γ̃, z)2`−mf(z) for all γ̃ ∈ Γ̃,

2) |f(z)| det(Im z)(2`−m)/4 is bounded on HW .

Let Jcusp
`,S (ΓJ , α) be the space of the cuspidal Jacobi forms of weight ` and index S

with respect to ΓJ with character α, that is, the holomorphic C-valued functions
F on HW,J such that

(1) F (γ(Z)) = α⊗ ξS,∞(γ)Jδ,S(γ, Z)F (Z) for all γ ∈ ΓJ ,
(2) |F (z, w)| det(Im z)`/2 exp

(
π〈Imw(Im z)−1, Imw〉S

)
is bounded on HW,J .

The condition (1) is equivalent to the following conditions:

(i) F (γ(z), w(cz + d)−1) = α(γ) det(cz + d)` exp(π
√−1〈wtc, w(cz + d)−1〉S) ·

F (z, w) for all γ =
[
a b
c d

]
∈ Γ,

(ii) F (z, w + xz + y) = exp 2π
√−1(− 1

2 〈x, xz〉S − 〈x,w〉S) · F (z, w) for all x ∈ L
and y ∈ L′.

The condition (2) is equivalent to the following condition:

(iii) for any γ ∈ Γ(1) n Λ∞, the conjugate F γ(Z) = Jδ,S(γ, Z)−1F (γ(Z)) has the
Fourier expansion

F γ(z, w) =
∑
x,c

a(x, c)e∞
(
tr(M−1cz) + 〈x,w〉S

)
with a suitable 0 < M ∈ Z. Here

∑
x,c is the summation over the x ∈ L and

c ∈ Sym∗
Z(L′,L) such that M−1c− 1

2

t
xx is positive definite.

The notation in the condition (iii) is defined as follows:

SymZ(L,L′) = {b ∈ SymQ(W,W′) | Lb ⊂ L′},
Sym∗

Z(L′,L) = {c ∈ SymQ(W′,W) | tr(bc) ∈ Z for all b ∈ SymZ(L,L′)}.
For any x ∈ W, define a txx ∈ SymQ(W′,W) such that tr(txx · b) = 〈x, xb〉S for all
b ∈ SymQ(W,W′).

If `−m/2 > 2n, we have an identification

A(Γ̃, α̃; δ ⊗ det−m/2) = S`−m
2
(Γ̃, α̃⊗ ε−1

Γ )

by f(σ̃) 7→ f(z) in the notation of 1.4.9 [Tak3, Th.7.2].
If `−m/2 > 2n+m/2, we have an identification

A(ΓJ , α; δ, S) = Jcusp
`,S (ΓJ , α)

by F (g) 7→ F (Z) in the notation of 1.4.9 [Tak1, Th.10.3].
Now Theorem 1.4.9 implies the following
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Theorem. Suppose that ` > 2n + m. Then a C-linear isometry F 7→ fF from
Jcusp
`,S (ΓJ , α) onto S`−m

2
(Γ̃, α̃⊗ ε−1

Γ ) is defined by

fF (z) = 2mn/4 det(Im z)m/2
∫
Lz\W′

C

F (z, w)ϑS(z, w)κS(z, w)dz(w) (z ∈ HW ).

1.4.11. Let Γ0 be a subgroup of Sp(V ) consisting of the γ =
[
a b
c d

]
∈ Sp(V ) such

that
(1) (L ⊕ L′)γ = L⊕ L′,
(2) [va+ v′c, vb+ v′d] ≡ [v, v′] (mod 2Z) for all v ∈ L and v′ ∈ L′.

Let M∗ be the dual lattice of M in U (see 1.1.3). Then we have

Proposition. If M∗S ⊂M , then ρ(Γ0) ⊂ Sp(L).

Chapter 2. Finite Local Theory

Through out this chapter, we will fix a finite place p of Q such that
1) {u1, · · · , um} is a Zp-basis of Mp,
2) p 6= 2 and M∗

p = Mp (see 1.1.5).

2.1. Algebras of Hecke operators.

2.1.1. Put H [Lp, D] = (Lp ⊕ L′p) ×Mp which is an open compact subgroup of
H [Vp, D]. The compact group

Kp = Sp(Lp) = {σ ∈ Sp(Vp) | (L⊕ L∗)σ = L⊕ L∗}
acts on H [Lp, D]. Then the semi-direct product KJ,p = Kp nH [Lp, D] is an open
compact subgroup of GJ,p. Put HJ,p = Cc(GJ,p//KJ,p,Up;χS,p) with the notation
of Appendix B.2.
K̃p = S̃p(Lp) is an open compact subgroup of G̃p (see 1.2.4 for the definition of

S̃p(Lp)). Then put Hp = Cc(G̃p//K̃p, Ep; νmp ) with the notation of Appendix B.2.
Here Ep is the kernel of the covering mapping $p : G̃p → Gp, and νp is the unique
non-trivial character of Ep.

Proposition. ρ̃p(K̃p) ⊂ S̃p(Lp). More precisely, ρ̃p(r′Lp
(γ)) = r′Lp

(ρ(γ)) for all
γ ∈ Sp(Lp).
Proof. Because {u1, · · · , um} is a Zp-basis of Mp, we can identify Lp with

⊕m
Lp

by ` = (uj`)j=1,··· ,m. Then we have

Θϕ(h) =
m∏
j=1

Θϕj((ujx, ujy), t/m)

for any ϕ =
⊗m

j=1 ϕj ∈ L2(Wp) =
⊗̂
L2(Wp) and h = ((x, y), t) ∈ HS [Vp] =

Vp ×Qp. Here we used the formula (1.1.2.1). Then we have

rLp(γ)⊗m = rLp(ρ(γ)) for all γ ∈ Sp(Lp).
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2.1.2. The Haar measure dGp(σ) (resp. dUp(s)) is normalized so that vol(Kp) = 1
(resp. vol(Mp) = 1). The Haar measure dG̃p

(σ) is normalized so that vol(K̃p) = 1.

Let dG̃p/Ep
(σ̇) be the Haar measure on G̃P /Ep induced from the Haar measure

dGp(σ) on Gp via the canonical isomorphism G̃p/Ep →̃Gp. Let dEp(a) be the
counting measure on Ep. Then we have an integral formula∫

G̃p

ϕ(σ)dG̃p
(σ) =

∫
G̃p/Ep

(∫
Ep

ϕ(σa)dEp (a)

)
dG̃p/Ep

(σ̇) for all ϕ ∈ Cc(G̃p).

2.1.3. With respect to the Qp basis {v1, · · · , vn, v∗1 , · · · , v∗n} of Vp, we will identify
Gp = Sp(Vp) with a matrix group Sp(n,Qp). Then Kp is identified with Sp(n,Zp).

For an n-tuple α = (α1, · · · , αn) ∈ Zn of integers, put d(pα) =
[
pα 0
0 p−α

]
∈ Gp

with pα =

p
α1

. . .
pαn

 ∈ GLn(Qp). Then we have a double coset decomposi-

tion Gp =
⊔
α∈Υ

Kpd(pα)Kp where

Υ = {(α1, · · · , αn) ∈ Zn | α1 ≥ · · · ≥ αn ≥ 0}.
Proposition. The support of any ϕ ∈ HJ,p is contained in

⊔
α∈Υ

KJ,pd(pα)KJ,pUp.

Proof. Suppose that ϕ(g) 6= 0 for g = (d(pα), h) ∈ GJ,p with h = ((x, y), 0) ∈
H [Vp, D] and α ∈ Υ. Then for any ` ∈ L′p, we have

ϕ(g) = ϕ(g · (1, (0, `), 0))

= ϕ((1, (0, `pα), 0)(d(pα), (x, y), D(x, `)))

= ep(〈x, `〉S)−1ϕ(g).

This means that 〈x,L′p〉S ⊂ Zp and then x ∈ Lp. Similarly for any ` ∈ Lp, we have

ϕ(g) = ϕ((1, (`, 0), 0) · g)
= ϕ((d(pα), (x, y)D(`pα, y))(1, (`pα, 0), 0))

= ep(〈`pα, y〉S)−1ϕ(g).

Then 〈Lp, ypα〉S ⊂ Zp and ypα ∈ L′p. Now we have

g = (1, (0, ypα), 0) · d(pα) · (1, (x, 0),
1
2
D(x, y)) ∈ KJ,p · d(pα) ·KJ,pUp.

2.1.4. For any α ∈ Υ, let ϕα be the characteristic function of KJ,pd(pα)KJ,p in
GJ,p. Then ϕα is an element of Cc(GJ,p//KJ,p). Put ϕα,S = θχS,p(ϕα) ∈ HJ,p in
the notation of Appendix B.2. Then

ϕα,S(g) =

{
χS,p(t)−1 if g ∈ KJ,pd(pα)KJ,pUp
0 otherwise

for g = (σ, (x, y), t) ∈ GJ,p.

By Proposition 2.1.3, {ϕα,S | α ∈ Υ} is a C-basis of HJ,p.

Proposition. C-algebra HJ,p is commutative.
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Proof. Put ε =
[

0 1n
1n 0

]
∈ GSp(n,Qp) and g′ = εg−1ε−1 ∈ GJ,p for all g ∈

GJ,p. Then g 7→ g′ is an anti-group isomorphism of GJ,p such that dGJ,p(g′) =
dGJ,p(g) and t′ = t for all t ∈ Up. We have ϕ(g′) = ϕ(g) for all ϕ ∈ HJ,p because
ϕα,S(g′) = ϕα,S(g) for all α ∈ Υ. Then a simple calculation shows that HJ,p is
commutative.

2.1.5. For any a ∈ GLQp(Wp), define an operator d0(a) ∈ Aut(L2(Wp)) by

(d(a)ϕ)(w) = | det a|p1/2ϕ(wa) (ϕ ∈ L2(Wp), w ∈ Wp).

Then d(a) = (
[
a 0
0 ta−1

]
,d0(a)) ∈Mp(Vp) such that Ψp(d(a)) = (det a,−1)p with

the Hilbert symbol (∗, ∗)p. Put ηp = γp(1)γp(−p) with the Weil number γp. Then
we have η2

p = (p,−1)p. Put

d̃(pα) = (d(pα), η−|α|p d0(pα)) ∈ G̃p
for α = (α1, · · · , αn) ∈ Zn with |α| = α1 + · · ·+ αn. Then we have a double coset
decomposition G̃p =

⊔
α∈Υ

K̃pd̃(pα)K̃pEp.

For any α ∈ Υ, let ψα be the characteristic function of K̃pd̃(pα)K̃p in G̃p. Then
ψα is an element of Cc(G̃p//K̃p). Put ψα,ν = θνm

p
(ψα) ∈ Hp = Cc(G̃p//K̃p, Ep; νmp ).

Then {ψα,ν | α ∈ Υ} is a C-basis of Hp.

2.2. Zonal spherical function associated with Weil representation.

2.2.1. The representation ωS,p of G̃J,p on L2(Wp) is an irreducible unitary repre-
sentation such that ωS,p|Ep×Up = νmp ⊗χS,p. The K̃J,p-invariant vectors of L2(Wp)
are the constant multiples of ϕLp , the characteristic function of Lp in Wp. Then
we have the zonal spherical function ΦS,p(g) = (ωS,p(g)ϕLp , ϕLp) (g ∈ G̃J,p) which
is an element of Ω+(G̃J,p//K̃J,p, Ep × Up; νmp ⊗ χS,p). We have

1) ΦS,p(d̃(pα)) =
(
η
−|α|
p p−|α|/2

)m
,

2) supp(ΦS,p) =
⊔
α∈Υ

K̃J,pd̃(pα)K̃J,p · (Ep × Up).

The first equation is due to the fact that ϕLp is equal to them-fold tensor product of
the characteristic function of Lp in Wp under the canonical identification L2(Wp) =⊗̂m

L2(Wp) given in 1.3.2. The second is proved by the same argument as that
used in the proof of Proposition 2.1.3, and by the first equation.

The following result is due to Shintani [Shn].

Proposition. For any ϕ ∈ Hp, let ϕJ be a continuous function on GJ,p defined by

ϕJ (σ, h) = ϕ(σ̃)ΦS,p(σ̃, h) for (σ̃, h) ∈ G̃J,p such that $(σ̃) = σ.

Then ϕ 7→ ϕJ gives a C-algebra isomorphism of Hp onto HJ,p.

Proof. We have only to prove that ϕ 7→ ϕJ is a C-algebra homomorphism. The re-
mark on the support of ΦS,p given above shows that the mapping is bijective. Recall
that ΠS,p is an irreducible unitary representation of H [Vp, D] which is integrable
modulo Up of formal degree one. Then for all ϕ, ψ ∈ Hp, we have
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(ϕJ ∗ ψJ)(σ, h) =
∫
G̃J,p/Ep×Up

ϕ(τ̃ )ΦS,p(τ̃ , h′)ψ(τ̃ σ̃)ΦS,p((τ̃ , h′)−1(σ̃, h))d(τ̃ , h′)

=
∫
G̃J,p/Ep×Up

ϕ(τ̃ )ψ(τ̃−1σ̃)(ωS,p(τ̃ ) ◦ΠS,p(h′)ϕLp , ϕLp)

× (ωS,p ◦ΠS,p(h′)ϕLp , ωS,p(σ̃, h)ϕLp)d(τ̃ , h′)

=
∫
G̃p/Ep

ϕ(τ̃ )ψ(τ̃−1σ̃)(ϕLp , ϕLp)(ωS,p(τ̃−1) ◦ ωS,p(σ̃, h)ϕLp , ωS,p(τ̃−1)ϕLp)d(τ̃ )

= (ϕ ∗ ψ)(σ̃)ΦS,p(σ̃, h) = (ϕ ∗ ψ)J (σ, h).

So ϕ 7→ ϕJ is a C-algebra homomorphism.

In the next section, we will show that the representation matrix of the inverse
mapping of ϕ 7→ ϕJ with respect to the C-basis {ϕα,S | α ∈ Υ} of HJ,p and C-basis
{ψα,ν | α ∈ Υ} of Hp is diagonal. This is the main result of this chapter (see
Theorem 2.3.2).

2.2.2. The condition (2) of Appendix B.3 implies that ΦS,p satisfies an integral
equation ∫

K̃J,p

ΦS,p(gkg′)dk = ΦS,p(g)ΦS,p(g′) for all g, g′ ∈ G̃J,p.

The following proposition is a keystone for the proof of our main result, Theorem
2.3.2.

Proposition. ΦS,p(σk̃τ) = ΦS,p(σ)ΦS,p(τ) for all σ, τ ∈ G̃p ⊂ G̃J,p and k̃ ∈ K̃J,p.

Proof. We can suppose that σ = d̃(pα) and τ = d̃(pβ) for some α, β ∈ Υ. Take any
element h−1k̃ of K̃J,p where k̃ = r′Lp

(k) with k ∈ Kp and h = ((`, `′), 0) ∈ H [Lp, D]
with ` ∈ Lp, `′ ∈ L′p. Then

ΦS,p(d̃(pα)·h−1k̃ · d̃(pβ))

= (ωS,p(k̃) ◦ ωS,p(d̃(pβ))ϕLp ,ΠS,p(h) ◦ ωS,p(d̃(p−α))ϕLp).

Put

ϕ(x) =
(
ΠS,p(h) ◦ ωS,p(d̃(p−α))ϕLp

)
(x)

= ep(〈x, `′〉S) · ηm|α|p pm|α|/2ϕLppα(x+ `) (x ∈ Wp)

where ϕLppα is the characteristic function of Lppα in Wp. Then for all (x, y) ∈
Vp = Wp ⊕W′

p, we have

θϕ(x, y) =
∫
Lp

ϕ(x+ λ)ep(〈λ, y〉S)dLp(λ)

=

{
η
m|α|
p p−m|α|/2ep(−〈x+ `, y〉S) if (x, y) ∈ Lp ⊕ L′pp−α,

0 otherwise

= ΦS,p(d̃(pα)) · ep(−〈x+ `, y〉S)
p|α|∑
j=1

ϕLp⊕L′p(x, y − λ′j)
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where ϕLp⊕L′p is the characteristic function of Lp⊕L′p in Vp, and {λ′j | 1 ≤ j ≤ p|α|}
is a complete set of representatives of L′pp−α/L′p such that λ′1 ∈ L′p. Put

ψ(x) =
(
ωS,p(d̃(pβ))ϕLp

)
(x) = ΦS,p(d̃(pβ))ϕLpp−β (x) (x ∈ Wp).

Then for all (x, y) ∈ Vp = Wp ⊕W′p, we have

θψ(x, y) =
∫
Lp

ψ(x+ λ)ep(〈λ, y〉S)dLp(λ)

=

{
ΦS,p(d̃(pβ)) if (x, y) ∈ Lpp−β ⊕ L′p,
0 otherwise

= ΦS,p(d̃(pβ)) ·
p|β|∑
i=1

ϕLp⊕L′p(x− λi, y)

where {λi | 1 ≤ i ≤ p|β|} is a complete set of representatives of Lpp−β/Lp such
that λ1 ∈ Lp. Now we have

ΦS,p(d̃(pα) · h−1k̃ · d̃(pβ)) = (ωS,p(k̃)θψ, θϕ)

=
∫

Vp

θψ((x, y)k)θϕ(x, y)dVp(x, y)

= ΦS,p(d̃(pα))ΦS,p(d̃(pβ))

×
p|β|∑
i=1

p|α|∑
j=1

ep(〈`, λ′j〉S)ϕLp⊕L′p((0, λ′j)k − (λi, 0)) ·
∫
Lp⊕L′p

ep(〈x, λ′j〉S)dVp(x, y)

= ΦS,p(d̃(pα))ΦS,p(d̃(pβ)) ·
p|β|∑
i=1

ϕLp⊕L′p(−(λi, 0))

= ΦS,p(d̃(pα))ΦS,p(d̃(pβ)).

2.3. Isomorphisms of algebras of Hecke operators.

2.3.1. We will start with investigating a relation between the zonal spherical func-
tions on GJ,p and on G̃p.

Lemma. For any ω ∈ Ω(G̃p//K̃p, Ep; νmp ), let ωJ be a continuous function on GJ,p
defined by

ωJ(σ, h) = ω(σ̃)ΦS,p(σ̃, h) for (σ̃, h) ∈ G̃J,p such that $(σ̃) = σ.

Then ωJ ∈ Ω(GJ,p//KJ,p,Up;χS,p).

Proof. We shall verify the defining conditions of Appendix B.3. First of all, ωJ is
a well-defined and non-zero continuous function on GJ,p which satisfies

1) ωJ(kgk′) = ωJ(g) for all k, k′ ∈ KJ,p,
2) ωJ(gs) = χS,p(s)ωJ(g) for all s ∈ Up.

Then the same argument as used in the proof of Proposition 2.1.3 shows that the
support of ωJ is contained in

⊔
α∈Υ

KJ,pd(pα)KJ,pUp. In particular, ωJ does not
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vanish at

g = (1, (0, y), 0) · d(pα) · (1, (x, 0), 0) ∈ GJ,p
only if (x, y) ∈ Lp ⊕ L′p. Now we will verify the integral formula∫

KJ,p

ωJ(gkg′)dk = ωJ(g)ωJ(g′) (g, g′ ∈ GJ,p).

It is enough to show the integral formula for

g = (1, (0, y), 0) · d(pα) · (1, (x, 0), 0), g′ = (1, (0, y′), 0) · d(pβ) · (1, (x′, 0), 0)

for some α, β ∈ Υ. For any ` ∈ Lp, we have∫
KJ,p

ωJ(gkg′)dk =
∫
KJ,p

ωJ ((1, (`, 0), 0) · gkg′)dk

=
∫
KJ,p

ωJ ((g · (1, (`pα), 0), D(`, y)) · kg′)dk

= ep(〈`, y〉S)
∫
KJ,p

ωJ(gkg′)dk,

and for any `′ ∈ L′p, we have∫
KJ,p

ωJ(gkg′)dk =
∫
KJ,p

ωJ(g · (1, (0, `′), 0) · kg′)dk

= ep(〈x, `′〉S)
∫
KJ,p

ωJ(gkg′)dk.

Similarly we have∫
KJ,p

ωJ(gkg′)dk = ep(〈`, y′〉S)
∫
KJ,p

ωJ(gkg′)dk

= ep(〈x′, `′〉S)
∫
KJ,p

ωJ(gkg′)dk

for any ` ∈ Lp and `′ ∈ L′p. So if (x, y) 6∈ Lp ⊕ L′p or (x′, y′) 6∈ Lp ⊕ L′p, then we
have ∫

KJ,p

ωJ(gkg′)dk = 0 = ωJ(g)ωJ(g′).

Suppose (x, y), (x′, y′) ∈ Lp ⊕ L′p. Then, by Proposition 2.2.2, we have∫
KJ,p

ωJ(gkg′)dk =
∫
KJ,p

ωJ(d(pα)kd(pβ))dk

=
∫
K̃p

ω(d̃(pα)kd̃(pβ))dkΦS,p(d̃(pα))ΦS,p(d̃(pβ))

= ω(d̃(pα))ω(d̃(pβ))ΦS,p(d̃(pα))ΦS,p(d̃(pβ))

= ωJ(g)ωJ(g′).

Now the integral formula is proved, and we have ωJ ∈ Ω(GJ,p//KJ,p,Up;χS,p).
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2.3.2. In 2.1.3, we defined C-basis {ϕα,S | α ∈ Υ} and {ψα,ν | α ∈ Υ} of HJ,p and
Hp, respectively. Define a C-linear isomorphism Tp : HJ,p →̃Hp by

Tp(ϕα,S) = η−m|α|p pm|α|/2ψα,ν for all α ∈ Υ.

Then our main result in this chapter is

Theorem. 1) Tp is a C-algebra isomorphism of HJ,p onto Hp which is the in-
verse of the isomorphism ϕ 7→ ϕJ given in Proposition 2.2.1.

2) ω̂ ◦ Tp = ω̂J for all ω ∈ Ω(G̃p//K̃p, Ep; νmp ).

Proof. We will prove the second assertion first. For any ω ∈ Ω(G̃p//K̃p, Ep; νmp ),
we have

ω̂J(ϕα,S) =
∫
GJ,p

ϕα(g)ωJ(g)dg

= ωJ(d(pα))CJ,α = ω(d̃(pα))ΦS,p(d̃(pα))CJ,α

ω̂(ψα,ν) =
∫
G̃p

ψα(σ)ω(σ)dσ

= ω(d̃(pα))Cα

where CJ,α (resp. Cα) is the volume of KJ,pd(pα)KJ,p (resp. K̃pd̃(pα)K̃p) with
respect to the Haar measure on GJ,p (resp. G̃p). Because of the normalization of
the Haar measures, we have

volG̃p
(K̃p ∩ d̃(pα)K̃pd̃(pα)−1) = volGp(K ∩ d(pα)Kd(pα)−1).

Then we have C−1
α CJ,α = pm|α|. So ω̂ ◦ Tp = ω̂J for all ω ∈ Ω(G̃p//K̃p, Ep; νmp ).

Now we will prove the first assertion. For any ϕ, ψ ∈ HJ,p, we have

ω̂(Tp(ϕ ∗ ψ)− Tp(ϕ)Tp(ψ)) = ω̂J(ϕ ∗ ψ)− ω̂J(ϕ)ω̂J (ψ) = 0

for all ω ∈ Ω(G̃p//K̃p, Ep; νmp ). This means that Tp(ϕ∗ψ)−Tp(ϕ)Tp(ψ) ∈ ⋂λKerλ,
where λ runs over the surjective C-algebra homomorphism of Hp onto C (see Ap-
pendix B.3). By the isomorphism of Proposition 2.2.1 and by the structure theorem
by [Mur], Hp is a domain and is finitely generated as a C-algebra. Then

⋂
λKerλ,

which is the intersection of the maximal ideals of Hp, is equal to {0}. So Tp is a
C-algebra isomorphism. Take a ϕ ∈ Hp. For any ω ∈ Ω(G̃p//K̃p, Ep; νmp ), we have

ω̂ ◦ Tp(ϕJ ) = ω̂J(ϕJ ) =
∫
G̃J,p/Ep×Up

ϕ(σ̃)ΦS,p(σ̃, h)ω(σ̃)ΦS,p(σ̃, h)d(σ̃, h)

=
∫
G̃J,p/Ep×Up

ϕ(σ̃)ω(σ̃)(ωS,p(σ̃) ◦ΠS,p(h)ϕLp , ϕLp)

· (ωS,p(σ̃) ◦ΠS,p(h)ϕLp , ϕLp)d(σ̃, h)

=
∫
G̃p/Ep

ϕ(σ̃)ω(σ̃)(ϕLp , ϕLp)(ωS,p(σ̃)−1ϕLp , ωS,p(σ̃)−1ϕLp)d(σ̃)

= ω̂(ϕ).

This means that λ ◦ Tp(ϕJ ) = λ(ϕ) for all surjective C-algebra homomorphisms λ
of Hp onto C. Then we have Tp(ϕJ ) = ϕ, that is, Tp is the inverse mapping of
ϕ 7→ ϕJ .
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2.3.3. By means of the C-algebra isomorphism Tp, we can prove the following

Proposition. The correspondence ω 7→ ωJ is a bijection of Ω(G̃p//K̃p, Ep; νmp )
onto Ω(GJ,p//KJ,p,Up;χS,p).

Proof. The mapping ω 7→ ωJ is injective, because the support of ω is contained in
that of ΦS,p (see the proof of Lemma 2.3.1). For any ω′ ∈ Ω(GJ,p//KJ,p,Up;χS,p),
there exists a surjective C-algebra homomorphism λ of Hp onto C such that ω̂′ =
λ ◦ Tp. Then there exists an ω ∈ Ω(G̃p//K̃p, Ep; νmp ) such that ω̂ = λ. So we have
ω̂J = ω̂′ and finally ωJ = ω′.

2.4. Unitary class-one representations.

2.4.1. When composed with the canonical projection G̃J,p → GJ,p, a unitary rep-
resentation of GJ,p is identified with a unitary representation of G̃J,p. Under this
identification, the correspondence π 7→ πJ ⊗ωS,p of Theorem 1.3.3 gives a bijection
of R(G̃p, E; νmp ) onto R(GJ,p,Up;χS,p). On the other hand, since HJ,p and Hp are
commutative, the general theory of zonal spherical function (see Appendix B.4)
gives a bijection of R(GJ,p//KJ,p,Up;χS,p) onto Ω+(GJ,p//KJ,p,Up;χS,p) and of
R(G̃p//K̃p, Ep; νmp ) onto Ω+(G̃p//K̃p, Ep; νmp ), respectively. We have the following
proposition.

Proposition. A bijection of R(G̃p//K̃p, Ep; νmp ) onto R(GJ,p//KJ,p,Up;χS,p) is
given by correspondence τ 7→ π = τJ ⊗ ωS,p. We have ωπ = (ωτ )J .

Proof. Take any π ∈ R(GJ,p//KJ,p,Up;χS,p) with the representation space Hπ.
Let F be the complex vector space consisting of the continuous C-linear mapping
T of L2(Wp) to Hπ such that T ◦ ΠS,p(h) = π(h) ◦ T for all h ∈ H [Vp, D]. Then
F is a complex Hilbert space with respect to the norm |T | = supϕ∈L2(Wp) |Tϕ|/|ϕ|.
Define a unitary representation τ of G̃p on F by τ(σ̃)T = π(σ) ◦ T ◦ ωS,p(σ̃)−1 for
all σ̃ ∈ G̃p such that $(σ̃) = σ. Then τ ∈ R(G̃p//K̃p, Ep; νmp ) and τJ ⊗ ωS,p = π

by the unitary isomorphism F ⊗̂L2(Wp) →̃Hπ defined by T ⊗ ϕ 7→ Tϕ. Take
a KJ,p-invariant vector u0 ∈ Hπ such that |u0| = 1. Now T 7→ TϕLp gives a
unitary isomorphism of F onto the subspace of Hπ consisting of the H [Lp, D]-
invariant vectors. Then there exists uniquely a T0 ∈ F such that T0ϕLp = u0.
Since (τ(k)T0)ϕLp = u0 for all k ∈ K̃p, T0 ∈ F is a K̃p-invariant vector. So
τ ∈ R(G̃p//K̃p, Ep; νmp ). The zonal spherical function ωπ of π is

(π(g)u0, u0) = (τ(σ̃)T0, T0)(ωS,p(σ̃, h)ϕLp , ϕLp)

= ωτ (σ̃)ΦS,p(σ̃, h)

= (ωτ )J (g)

for all g = (σ, h) ∈ GJ,p with σ̃ ∈ G̃p such that $(σ̃) = σ.

2.4.2. Proposition 2.4.1 says that the correspondence ω 7→ ωJ of Proposition 2.3.3
gives a bijection of Ω+(G̃p//K̃p, Ep; νmp ) onto Ω+(GJ,p//KJ,p,Up;χS,p). Then con-
sider the bounded zonal spherical functions. The correspondence ω 7→ ωJ gives
an injection of Ωb(G̃p//K̃p, Ep; νmp ) into Ωb(GJ,p//KJ,p,Up;χS,p). Is it surjective?
This question is related with the growth rate problem stated in [Sat3, Remark 3 to
Theorem 3].
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Chapter 3. Global Theory

We will suppose the conditions (A),(B),(C) of 1.1.2 and the condition
(D) M∗S ⊂M where M∗ = {u ∈ U | 〈u,M〉 ⊂ Z} is the dual lattice of M .

Under the condition (D), we have ρ(Sp(Lp)) ⊂ Sp(Lp) for all p ≤ ∞ (see Propo-
sition 1.4.11). We will fix a finite set Σ of finite places of Q such that 2 ∈ Σ
and

1) {u1, · · · , um} is a Zp-basis of Mp,
2) M∗

p = Mp

for all finite places p of Q outside Σ.

3.1. Global correspondence of automorphic forms.

3.1.1. For any finite place p of Q, let Kp be a open subgroup of Sp(Lp) such
that Kp = Sp(Lp) for all p 6∈ Σ. Let K∞ be a maximal compact subgroup of
G∞ = Sp(V∞) which is the isotropy subgroup of z0 ∈ HW . Put K =

∏
p≤∞Kp

which is a compact subgroup of GA. The Haar measure dGp(σ) of Gp for p <∞ is
normalized so that vol(Kp) = 1.

Let

H [VA, D] = VA × UA =
∏
p≤∞

′
H [Vp, D]

be the restricted direct product of {H [Vp, D]}p≤∞ with respect to {H [Lp, D]}p<∞.
Here H [Lp, D] = (Lp ⊕ L′p)× 1

4Mp is an open compact subgroup of H [Vp, D].
GA acts on H [VA, D], and the semi-direct product GJ,A = GA n H [VA, D] is

the restricted direct product of {GJ,p}p≤∞ with respect to KJ,p = Kp nH [Lp, D]
(p <∞). Then KJ = K∞ ×∏p<∞KJ,p is a compact subgroup of GJ,A.

Put K̃p = r′Lp
(Kp) for 2 < p < ∞, and K̃p = $−1

p (Kp) for p = 2,∞. Then

K̃ =
∏
p≤∞ K̃p is a compact subgroup of G̃A. The Haar measure dG̃p

(σ̃) of G̃p for

p <∞ is normalized so that vol(K̃p) = 1 for p 6= 2, and vol(K̃2) = 2.
G̃A acts on H [VA, D] via

$ =
∏
p≤∞

$p : G̃A → GA.

Then the semi-direct product G̃J,A = G̃AnH [VA, D] is the restricted direct product
of {G̃J,p}p≤∞ with respect to K̃J,p = K̃p nH [Lp, D] (p <∞).

3.1.2. H [VA, D] has a unique irreducible unitary representation ΠS such that
ΠS(0, t) = e(tr(S · t)) for all t ∈ UA. It is realized on L2(WA) by

(ΠS(h)ϕ)(w) = e
(

tr(S · t) +
1
2
〈x, y〉S + 〈w, y〉S

)
ϕ(w + x) (ϕ ∈ L2(WA))

for h = ((x, y), t) ∈ H [VA, D] (x ∈ WA, y ∈ W′
A). Then ΠS is unitarily equivalent

to the restricted tensor product of {ΠS,p}p≤∞ with respect to {ϕLp}p<∞ where
ϕLp ∈ L2(Wp) is the characteristic function of Lp in Wp (see Appendix A.5 for
the definition of the restricted tensor product of representations). ΠS is unitarily
isomorphic to the induced representation Ind(H [VA, D],Λ; ξS) where Λ = V × UA
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and ξS(λ) = e(tr(S ·t)) (λ = (x, t) ∈ Λ) is a character of Λ. The unitary intertwining
mapping ϕ 7→ Θϕ is given by

Θϕ(h) =
∑
`∈W

ϕ(x+ `)e
(

tr(S · t) +
1
2
〈x, y〉S + 〈`, y〉S

)
(3.1.2.1)

for any Schwartz-Bruhat function ϕ ∈ S(WA) and h = ((x, y), t) ∈ H [VA, D].

3.1.3. The Weil representation ωp is realized on L2(Wp) for all p ≤ ∞. Let ωA be
the restricted tensor product of {ωp}p≤∞ with respect to {ϕLp}p<∞. Then ωA is
realized on L2(WA). It is also realized on Ind(H [VA, D],Λ; ξS). The intertwining
mapping is given by (3.1.2.1). ωA is a unitary representation of

∏′
p≤∞ S̃p(Vp), the

restricted direct product of {S̃p(Vp)}p≤∞ with respect to {S̃p(Lp)}p<∞.
The irreducible unitary representation ωS,p of G̃J,p is realized on L2(Wp) for all

p ≤ ∞. Let ωS,A be the restricted tensor product of {ωS,p}p≤∞ with respect to
{ϕLp}p<∞. Then ωS,A is an irreducible unitary representation of G̃J,A, and

ωS,A(σ̃, h) = ωA(ρ̃(σ̃)) ◦ΠS(h) for all (σ̃, h) ∈ G̃J,A = G̃A nH [VA, D],

where

ρ̃ : G̃A →
∏
p≤∞

′
S̃p(Vp) (defined by (σp)p≤∞ 7→ (ρ̃p(σp))p≤∞)

is a continuous group homomorphism which is well-defined by Proposition 2.1.1.

3.1.4. Let GΣ
A (resp. G̃Σ

A) be the subgroup of GA (resp. G̃A) consisting of the
(σp)p≤∞ such that σp ∈ Kp (resp. σp ∈ K̃p) for all p ∈ Σ. Put GΣ

J,A = GΣ
A n

H [VA, D] and G̃Σ
J,A = G̃Σ

A nH [VA, D].
Put GΣ

J,p = GJ,p if p 6∈ Σ, and GΣ
J,p = Kp n H [Vp, D] if p ∈ Σ. Then GΣ

J,A is
the restricted direct product of {GΣ

J,p}p≤∞ with respect to {KJ,p}p<∞. Similarly
put G̃Σ

J,p = G̃J,p if p 6∈ Σ, and G̃Σ
J,p = K̃p n H [Vp, D] if p ∈ Σ. Then G̃Σ

J,A is the
restricted direct product of {G̃Σ

J,p}p≤∞ with respect to {K̃J,p}p<∞.
Put ωΣ

S,A = ωS,A|G̃Σ
J,A

which is an irreducible unitary representation of G̃Σ
J,A.

For any unitary representation π of G̃Σ
A, let us denote by πJ the composition of

π with the canonical projection G̃Σ
J,A onto G̃Σ

A. Then, similar to Theorem 1.3.3, we
have

Theorem. π 7→ πJ ⊗ ωΣ
S,A gives a bijection between the set of the unitary equiva-

lence classes of the unitary representations of G̃Σ
A and the set of the unitary equiv-

alence classes of the unitary representations τ of G̃Σ
J,A such that τ(t) = e(tr(S · t))

for all t ∈ Z(G̃Σ
J,A) = UA. πJ ⊗ ωΣ

S,A is irreducible if and only if π is. πJ ⊗ ωΣ
S,A is

square-integrable modulo the center if and only if π is square-integrable.

3.1.5. PutGΣ
Q = Sp(V )∩GΣ

A (resp. G̃Σ
Q = S̃p(V )∩G̃Σ

A) which is a discrete subgroup
of GΣ

A (resp. G̃Σ
A). Put GΣ

J,Q = GΣ
Q nH [V, D] which is a discrete subgroup of GΣ

J,A.
Then GΣ

J,Q ·UA = GΣ
Q nΛ is a closed unimodular subgroup of GΣ

J,A. Define a unitary
character 1⊗ ξS of GΣ

J,Q · UA = GΣ
Q n Λ by

(1⊗ ξS)(γ, λ) = ξS(λ) for γ ∈ GΣ
Q, λ ∈ Λ.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HALF-INTEGRAL WEIGHT SIEGEL MODULAR FORMS AND JACOBI FORMS 765

Consider the induced representation π = Ind(GΣ
J,A, G

Σ
J,Q ·UA;1⊗ ξS). Let π̃ be the

composition of π with the canonical projection G̃Σ
J,A → GΣ

J,A. Then we have

π̃ = Ind(G̃Σ
J,A, G̃

Σ
J,Q · UA ·EΣ;1⊗ ξS).

Here we put EΣ =
(∏

p≤∞Ep

)
∩ G̃Σ

A = Ker($Σ) with $Σ = $|G̃Σ
A

and 1 ⊗ ξS is

regarded as a character of G̃Σ
J,Q ·UA ·EΣ via the canonical projection G̃Σ

J,A → GΣ
J,A.

We have G̃Σ
Q ·EΣ = $Σ−1(GΣ

Q). Define a character εΣ of G̃Σ
Q · EΣ by

J(γ̃) = (1, εΣ(γ̃)) · rQ(γ) (γ = $(γ̃) ∈ GΣ
Q).

More explicitly

εΣ(γ̃) =
∏
p≤∞

λp for γ̃ = γ0 · (1, λp)p≤∞ with γ0 ∈ G̃Σ
Q, (1, λp)p≤∞ ∈ EΣ.

We have ωΣ
S,A|EΣ×UA

= εmΣ ⊗ ξS . Put τ = Ind(G̃Σ
A, G̃

Σ
Q · EΣ; εmΣ ). Then we have

Theorem. τ ⊗ ωΣ
S,A is unitarily equivalent to π̃ by the unitary mapping ϕ ⊗ ψ 7→

ϕ� ψ defined by

(ϕ� ψ)(σ, h) = (τ(σ)ϕ)(1) · (ωΣ
S,A(σ, h)ψ)(1).

Here ωΣ
S,A is realized on Ind(H [VA, D],Λ; ξS).

This theorem is proved by using an argument similar to the proof of Theorem
1.4.1.

Remark. The unitary representations of GΣ
J,A are regarded as unitary representa-

tions of G̃Σ
J,A via the canonical projection G̃Σ

J,A → GΣ
J,A. Then the correspondence

π 7→ πJ ⊗ ωΣ
S,A of Theorem 3.1.4 gives a bijection between the set of the unitary

equivalence classes of the unitary representations π of G̃Σ
A such that π|EΣ = εmΣ and

the set of the unitary equivalence classes of the unitary representations τ of GΣ
J,A

such that τ(t) = e(tr(S · t)) for all t ∈ Z(GΣ
J,A) = UA.

3.1.6. Let δ =
⊗

p≤∞ δp be an irreducible unitary representation of K such that

1) δp = 1Kp is the trivial representation of Kp for all finite p 6∈ Σ,
2) δp is a finite order character of Kp for all p ∈ Σ,
3) δ∞ corresponds to the Young diagram (given below) with `1 ≥ `2 ≥ · · · ≥

`n > n+m/2.
The representation space of δ is denoted by Vδ = Vδ∞ .

1 2 · · · · · · · · · `1
1 2 · · · · · · `2

· · · · · ·
1 2 · · · `n

As remarked at the beginning of this chapter, the condition (D) implies ρ(Sp(L2)) ⊂
Sp(L2). Then we have ρ̃2(S̃p(L2)) ⊂ S̃p(L2) by the definition of S̃p(L2). Define
an irreducible unitary representation δ̃ =

⊗
p≤∞ δ̃p of K̃ by

1) δ̃p = (εL,p ◦ ρ̃p)⊗ (δp ◦$p) for all p <∞,
2) δ̃∞ = det−m/2 ⊗ (δ∞ ◦$∞).
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Note that δ̃p = δp ◦$p for all 2 < p <∞. Then δ̃p is the trivial representation for
all finite p 6∈ Σ.

For all finite p, define a unitary character δJ,p of KJ,p by

δJ,p(k, h) = δp(k) · ξS,p(h)−1 for k ∈ Kp, h ∈ H [Lp, D].

Note that δJ,p is the trivial character for all finite p 6∈ Σ. Let δJ = δ∞⊗⊗p<∞ δJ,p
be an irreducible unitary representation of KJ on the representation space Vδ∞ .

3.1.7. Let τp be an irreducible unitary representation of G̃p or K̃p (p ≤ ∞) such
that

1) τp ∈ R(G̃p//K̃p, Ep; νmp ) for all finite p 6∈ Σ,
2) τ∞ = πδ∞⊗δ−m

0
is the holomorphic discrete series of G̃∞ with minimal K̃∞-

type δ∞ ⊗ δ−m0 constructed in 1.4.5,
3) τp = δ̃p for all p ∈ Σ.

For all finite p 6∈ Σ, choose a K̃p-invariant vector up of unit length in the repre-
sentation space of τp. Recall that the space of the K̃P -invariant vectors in τp is
one-dimensional for all finite p 6∈ Σ. Let τ =

⊗′
p≤∞ τp be the restricted tensor

product of {τp}p≤∞ with respect to {up}p6∈Σ∪{∞}. Then τ is an irreducible unitary
representation of G̃Σ

A such that the multiplicity of δ̃ in τ
K̃

is equal to one. We have
τ |EΣ = εmΣ |EΣ .

3.1.8. Define an irreducible unitary representation πp of GΣ
J,p (p ≤ ∞) by

1) πp = τp ⊗ ω̌S,p for all p 6∈ Σ, where ω̌S,p is the contragredient representation
of ωS,p,

2) πp = δ̃p ⊗ ω̌S,p for all p ∈ Σ.

Here if δ̃2|E2 = νm2 so δ̃2 ⊗ ω̌S,2 is trivial on E2, then π2 = δ̃2 ⊗ ω̌S,2 is regarded as
a representation of GΣ

J,2 = K2 n H [V2, D]. On the other hand, for all odd p ∈ Σ,
if the covering mapping $p gives an isomorphism K̃p →̃Kp, then πp = δ̃p ⊗ ω̌S,p
is regarded as a representation of GΣ

J,p = Kp n H [Vp, D]. π∞ is the holomorphic
discrete series πS,∞ of GJ,∞ constructed in 1.4.6.

For all finite p 6∈ Σ, the space of the KJ,p-invariant vectors in πp is one-
dimensional. Choose a KJ,p-invariant vector vp of πp of unit length. Let π =⊗′

p≤∞ πp be the restricted tensor product of {πp}p≤∞ with respect to {vp}p6∈Σ∪{∞}.
Then π is an irreducible unitary representation of GJ,A such that the multiplicity
of δJ in π|KJ is equal to one. We have π|UA = ξ−1

A |UA .

3.1.9. For any finite place p of Q, let κp be a character of K̃J,p = K̃p nH [Lp, D]
such that

1) κ2 = (εL,2 ◦ ρ̃2)⊗ ξS,2,
2) κp = 1

K̃p
⊗ ξS,p, for all odd p ∈ Σ,

3) κp = 1
K̃J,p

for all finite p 6∈ Σ.

Recall that ϕLp ∈ L2(Wp) is a C-basis of the κp-isotypic component of ωS,p. Put
κ∞ = det−m/2. Then κ =

⊗
p≤∞ κp is a character of K̃J . Let ϕ =

∏
p≤∞ ϕp ∈

S(WA) be a Schwartz-Bruhat function such that ϕp = ϕLp for all p <∞:

ϕ∞(x) = det(2Im z0)m/4e∞

(
1
2
〈x, xz0〉S

)
(x ∈ W∞).
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Then, by the intertwining mapping (3.1.2.1), Θϕ ∈ Ind(H [VA, D],Λ; ξA) is a uni-
tary C-basis of the κ-isotypic component of ωS,A. Put ΘS(g) = (ωS,A(g)Θϕ)(1)
(g ∈ GJ,A).

3.1.10. Let us denote by A(KJ ;π, δJ , S) the space of the automorphic forms on
GΣ
J,A associated with the data

(G,K,Γ, E; ξ, π, δ) = (GΣ
J,A, KJ , G

Σ
J,Q · UA,UA;1⊗ ξ−1

S , π, δJ)

in the sense of Appendix A.2. Let us also denote by A(K̃; τ, δ̃) the space of the
automorphic forms on G̃Σ

A associated with the data

(G,K,Γ, E; ξ, π, δ) = (G̃Σ
A, K̃, G̃

Σ
Q · EΣ, EΣ; εmΣ , τ, δ̃).

Let us denote by π̃ (resp. δ̃J) the composition of π (resp. δJ) with the canonical
projection G̃J,A → GJ,A (resp. K̃J → KJ). Then, by the definitions of τ and π,
we have π̃ = τJ ⊗ ω̌S,A. The δ̃J -isotypic component in π̃ is the tensor product of
the δ̃-isotypic component in τ and the κ̌-isotypic component in ω̌S,A. Then, by
Theorem 3.1.5 and arguments similar to those in the proof of Theorem 1.4.8, we
have the following theorem.

Theorem. A C-linear isometry F 7→ fF from A(KJ ;π, δJ , S) onto A(K̃; τ, δ̃) is
defined by

fF (σ̃) =
∫

Λ\H[VA,D]

F (σ, h)ΘS(σ̃, h)dḣ.

Here σ̃ ∈ G̃Σ
A is an element such that $(σ̃) = σ ∈ GΣ

A.

3.2. The action of Hecke operators on the infinite part. Throughout this
section, we will fix the compact groups and their representations defined in 3.1.1
and 3.1.6, respectively.

3.2.1. Put Γ = Sp(V ) ∩
(
G∞ ×∏p<∞Kp

)
which is identified with a discrete

subgroup of G∞ via the projection to G∞. Put Γ̃ = $−1∞ (Γ) which is a discrete
subgroup of G̃∞.

Proposition. 1) G̃Σ
A = G̃Σ

Q ·
(
G̃∞ ×∏p<∞ K̃p

)
,

2) (γ, Tp)p≤∞ 7→ (γ, T∞) gives an isomorphism

G̃Σ
Q ∩

(
G̃∞ ×

∏
p<∞

K̃p

)
→̃ Γ̃.

Proof. 1) It is enough to show

G̃A = S̃p(V ) ·
(
G̃∞ ×

∏
p<∞

K̃p

)
.

Take any σ̃ = (σp, Tp)p≤∞ ∈ G̃A. By the strong approximation theorem, we have

GA = Sp(V ) ·
(
G∞ ×

∏
p<∞

Kp

)
.
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So GA 3 (σp)p≤∞ = γ · (τ∞, (kp)P<∞) with some γ ∈ Sp(V ), τ∞ ∈ G∞ and kp ∈
Kp. Put k̃p = (kp, T ′p) = r′Lp

(kp) ∈ K̃p for 2 < p < ∞, k̃2 = (k2, T
′
2) ∈ $−1

2 (k2) ⊂
K̃2 and τ̃∞ = (τ∞, T ′∞) ∈ $−1

∞ (τ∞) ⊂ G̃∞. Then there exists an ε ∈ C1 such that⊗
p≤∞(TpT ′−1

p ) = ε ·rW (γ) because J
(
σ̃ · (τ̃∞, (k̃p)p<∞)−1

)
∈ S̃p(VA) is projected

onto γ ∈ Sp(V ). Replacing T ′2 with ε · T ′2, we have σ̃ ∈ S̃p(V ) · (τ̃∞, (k̃p)p<∞).

2) Let (σ, Tp)p≤∞ ∈ S̃p(V )∩
(
G̃∞ ×∏p<∞ K̃p

)
be such that (σ, T∞) = 1. Then

σ = 1 and Tp = rLp(σ) = 1 for all 2 < p < ∞. Finally we have
⊗

p≤∞ Tp =
rW (σ) = 1, so T2 = 1. Hence (σ, Tp)p≤∞ 7→ (σ, T∞) is an injective group homo-
morphism into Γ̃. On the other hand, take any (γ, T∞) ∈ Γ̃. Then γ ∈ Kp for
all p < ∞, so put (γ, Tp) = r′Lp

(γ) ∈ K̃p for all 2 < p < ∞, and choose any

(γ, T2) ∈ $−1
2 (γ) ⊂ K̃2. There exists an ε ∈ C1 such that rW (γ) = ε ·⊗p≤∞ Tp.

Replacing T2 with ε · T2, we have (γ, Tp)p≤∞ ∈ S̃p(V ) ∩
(
G̃∞ ×∏p<∞ K̃p

)
.

Define a finite order character α of Γ by α(γ) =
∏
p<∞ δp(γ).

3.2.2. Let π∞ = πδ∞,S be the holomorphic discrete series of GJ,∞ constructed in
1.4.6 (see also 3.1.8). Let us denote by MΣ(KJ ; δJ , S) the complex vector space
of the continuous Vδ-valued functions F on GΣ

J,A satisfying the conditions

1) F (γg) = F (g) for all γ ∈ GΣ
J,Q,

2) F (λg) = ξS(λ)F (g) for all λ ∈ Λ,

3)
∫
GΣ

J,QUA\GΣ
J,A

|F (g)|2dġ <∞,

4) F (gk) = δJ(k−1)F (g) for all k ∈ KJ ,
5) F satisfies the integral equation∫

GJ,∞/U∞
F (gh−1)ϕ(h)dḣ = ψ̂π∞,δ∞(ϕ)F (g)

for all ϕ ∈ Cc(GJ,∞/U∞, χ−1
S,∞, δJ,∞)0.

We have

GΣ
J,A = GΣ

J,Q ·
(
GJ,∞ ×

∏
p<∞

KJ,p

)
.

So, for any F ∈ A(ΓJ , α; δ∞, S), define a Vδ-valued function FA on GΣ
J,A by

FA(g) =
∏
p<∞

δJ,p(k−1
p ) · F (g∞)

for g = γ · (g∞, (kp)p<∞) ∈ GΣ
J,A,

with γ ∈ GΣ
J,Q, g∞ ∈ GJ,∞, kp ∈ KJ,p.

Then FA is well-defined, and F 7→ FA gives a C-linear isometry fromA(ΓJ , α; δ∞, S)
onto MΣ(KJ ; δJ , S). In particular, MΣ(KJ ; δJ , S) is a finite dimensional complex
Hilbert space with the inner product

(F, F ′) =
∫
GΣ

J,A/UA

(F (g), F ′(g))δdġ.

For any finite p 6∈ Σ, the algebra of the local Hecke operators

ȞJ,p = Cc(GJ,p//KJ,p,Up;χ−1
S,p)
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acts on MΣ(KJ ; δJ , S) by convolution

(F ∗ ϕ)(g) =
∫
GJ,p/Up

F (gx−1)ϕ(x)dẋ for all ϕ ∈ ȞJ,p.

3.2.3. If we take the local representations πp and the global representation π de-
fined in 3.1.8, we have the following proposition.

Proposition. A(KJ ;π, δJ , S) is the subspace of F ∈MΣ(KJ ; δ, S) such that

F ∗ ϕ = ω̂πp(ϕ)F for all ϕ ∈ ȞJ,p

with all finite p 6∈ Σ. Here ωπp ∈ Ω+(GJ,p//KJ,p,Up;χ−1
S,p) is the zonal spherical

function associated with πp ∈ R(GJ,p//KJ,p,Up;χ−1
S,p) (see Appendix B.4), and

ω̂πp(ϕ) =
∫
GJ,p/Up

ωπp(g)ϕ(g)dġ

(see Appendix B.3).

Proof. Proposition A.5 in Appendix A implies that A(KJ ;π, δJ , S) is the subspace
of F ∈ MΣ(KJ ; δJ , S) such that∫

GΣ
J,p/Up

F (gh−1)ϕ(h)dḣ = ψ̂πp,δp(ϕ)F (g)

for all ϕ ∈ Cc(GΣ
J,p/Up, χ

−1
S,p, δJ,p)

0 with all finite p. For all finite p 6∈ Σ,

Cc(GΣ
J,p/Up, χ

−1
S,p, δJ,p)

0 = Cc(GJ,p//KJ,p,Up;χ−1
S,p), and ψπp,δJ,p = ωπp .

Take any p ∈ Σ. For any ϕ ∈ Cc(GΣ
J,p/Up, χ

−1
S,p, δJ,p)

0, we have

supp(ϕ) ⊂ KJ,p · Up
by the same argument as that used in the proof of Proposition 2.1.3. Then we have∫

GΣ
J,p/Up

F (gh−1)ϕ(h)dḣ = ϕ(1)F (g).

On the other hand,

ψπp,δJ,p(g) = δp(k)ξ−1
S,p(h)×

{
1 if (x, y) ∈ Lp ⊕ L′p,
0 otherwise

for all g = (k, h) ∈ GΣ
J,p = Kp nH [Vp, D] with h = ((x, y), t) ∈ H [Vp, D]. Then we

have

ψ̂πp,δJ,p(ϕ) = ϕ(1) for all ϕ ∈ Cc(GΣ
J,p/Up, χ

−1
S,p, δJ,p)

0.

Then we have the required conditions.

3.2.4. Let τ∞ be the holomorphic discrete series of G̃∞ defined in 3.1.7. Let us
denote byMΣ(K̃; δ̃) the complex vector space of the continuous Vδ-valued functions
f on G̃Σ

A satisfying the conditions

1) f(γσ) = εmΣ (γ)f(σ) for all γ ∈ G̃Σ
Q · EΣ,

2)
∫
G̃Σ

QE
Σ\G̃Σ

A

|f(σ)|2dσ̇ <∞,

3) f(σk) = δ̃(k−1)f(σ) for all k ∈ K̃,
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4) f satisfies the integral equations∫
G̃∞/E∞

f(σx−1)ϕ(x)dẋ = ψ̂τ∞,δ̃∞(ϕ)f(σ)

for all ϕ ∈ Cc(G̃∞/E∞, ν∞, δ̃∞)0.

By Proposition 3.2.1, we have

G̃Σ
A = G̃Σ

Q ·
(
G̃∞ ×

∏
p<∞

K̃p

)
.

So, for any f ∈ A(Γ̃, α̃; δ̃∞), define a Vδ-valued function fA on G̃Σ
A by

fA(σ) =
∏
p<∞

δ̃p(k−1
p ) · f(σ∞)

for σ = γ · (σ∞, (kp)p<∞) ∈ G̃Σ
A,

with γ ∈ G̃Σ
Q, σ∞ ∈ G̃∞, kp ∈ K̃p.

Then fA is well-defined, and f 7→ fA gives a C-linear isomorphism from A(Γ̃, α̃; δ̃∞)
onto MΣ(K̃; δ̃). Here we use Proposition 1.2.6 and the statement 2) of Proposition
3.2.1. Because of the special normalization of the Haar measure of G̃2, the mapping
f 7→ fA is isometric. In particular, MΣ(K̃; δ̃) is a finite dimensional complex
Hilbert space with respect to the inner product

(f, f ′) =
∫
G̃Σ

A/E
Σ
(f(σ), f ′(σ))δdσ̇.

For any finite p 6∈ Σ, the algebra of the local Hecke operators

Hp = Cc(G̃p//K̃p, Ep; νmp )

acts on MΣ(K̃; δ̃) by convolution

(f ∗ ϕ)(σ) =
∫
G̃p/Ep

f(σx−1)ϕ(x)dẋ for all ϕ ∈ Hp.

3.2.5. If we take the local representations τp and the global representation τ defined
in 3.1.7, we have the following proposition which is proved by the same argument
as that used for Proposition 3.2.3.

Proposition. A(K̃; τ, δ̃) is the subspace of f ∈ MΣ(K̃; δ̃) such that

f ∗ ϕ = ω̂τp(ϕ)f for all ϕ ∈ Hp

with all finite p 6∈ Σ. Here ωτp ∈ Ω+(G̃p//K̃p, Ep; νmp ) is the zonal spherical func-
tion associated with τp ∈ R(G̃p//K̃p, Ep; νmp ) (see Appendix B.4), and

ω̂τp(ϕ) =
∫
G̃p/Ep

ωτp(σ)ϕ(σ)dσ̇

(see Appendix B.3).
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3.2.6. Now we will show the main theorem in this section.

Theorem. For any F ∈ MΣ(KJ ; δJ , S), put

fF (σ̃) =
∫

Λ\H[VA,D]

F (σ, h)ΘS(σ̃, h)dḣ

where σ̃ ∈ G̃Σ
A is an element such that $(σ̃) = σ ∈ GΣ

A. Then F 7→ fF is a C-linear
isometry from MΣ(KJ ; δJ , S) onto MΣ(K̃; δ̃) which is equivariant with respect to
the actions of Hecke operators:

fF∗ϕ = fF ∗ Tp(ϕ) for all ϕ ∈ ȞJ,p

with all finite p 6∈ Σ.

Proof. We will embed G̃∞ in G̃Σ
A by σ∞ = (σ∞, 1, 1, · · · ). For any f ∈ A(Γ̃, α̃; δ̃∞),

we have fA(σ∞) = f(σ∞) for all σ∞ ∈ G̃∞. We have also

ΘS(σ∞, h) = ΘS,∞(σ∞, h∞) for all h ∈ V∞ ×
∏
p<∞

(Lp ⊕ L′p) ⊂ H [VA, D].

Then, for any F ∈ MΣ(KJ ; δJ , S), we have

fFA(σ̃∞) =
∫

V∩(V∞×
∏

p<∞ Lp⊕L′p)\V∞×∏p<∞ Lp⊕L′p
FA(σ∞, hσ∞)ΘS(σ̃∞, hσ∞)dḣ

=
∫

Λ\H[V∞,D]

F (σ∞, hσ∞)ΘS,∞(σ̃∞, hσ∞)dḣ

= fF (σ̃∞).

Hence F 7→ fF is a C-linear isometry from MΣ(KJ ; δJ , S) onto MΣ(K̃; δ̃) by
Theorem 1.4.8.

Fix a finite p 6∈ Σ. For any ϕ ∈ ȞJ,p, we have

(F ∗ ϕ, F ′) = (F, F ′ ∗ ϕ∗) for all F, F ′ ∈ MΣ(KJ ; δJ , S).

Here we put ϕ∗(g) = ϕ(g−1). On the other hand we have ϕ∗α,S = ϕα,S for all α ∈ Υ
(see 2.1.4 for the notation). Because ȞJ,p is commutative,

⊔
p6∈Σ∪{∞} ȞJ,p acts on

MΣ(KJ ; δJ , S) as normal linear operators which are commutative with each other.
Then there exists an orthonormal C-basis {F1, · · · , Fn} of MΣ(KJ ; δJ , S) such that
each Fj is a common eigenfunction of the linear operators

⊔
p6∈Σ∪{∞} ȞJ,p; that is,

there exists a surjective C-algebra homomorphism

λ
(j)
J,p : ȞJ,p → C such that Fj ∗ ϕ = λ

(j)
J,p(ϕ)Fj for all ϕ ∈ ȞJ,p.

Fix a non-zero α ∈ V ∗
δ . Then Fj,α(g) = 〈Fj(g), α〉 is a non-zero element of

Ind(GΣ
J,A, G

Σ
J,Q · UA;1⊗ ξS),

and ω
(j)
J,p(g) = (g · Fj,α, Fj,α)|Fj,α|−2 is an element of Ω+(GJ,p//KJ,p,Up;χS,p)

such that ω̂(j)
J,p = λ

(j)
J,p. Let π(j)

p ∈ R(GJ,p//KJ,p,Up;χ−1
S,p) be the class-one rep-

resentation of GJ,p whose contragredient representation corresponds to ω
(j)
J,p. By

Proposition 2.4.1, we have π(j)
J,p = (τ (j)

p )J ⊗ ω̌S,p with a class-one representation
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τ
(j)
p ∈ R(G̃p//K̃p, Ep; νmp ) of G̃p. Let ω(j)

p ∈ Ω+(G̃p//K̃p, Ep; νmp ) be the zonal

spherical function associated with τ (j)
p .

Let τ (j) (resp. π(j)) be the global representation defined by the local represen-
tations {τ (j)

p }p6∈Σ∪{∞} (resp. {π(j)
p }p6∈Σ∪{∞}) as in 3.1.7 (resp. 3.1.8). Then Fj is

an element of A(KJ ;π(j), δJ , S). By Theorem 3.1.10,

fj(σ̃) =
∫

Λ\H[VA,D]

Fj(σ, h)ΘS(σ̃, h)dḣ

is an element of A(K̃; τ, δ̃). In particular, {f1, · · · , fn} is an orthonormal C-basis
of MΣ(K̃; δ̃) such that

fj ∗ ϕ = ω̂(j)
p (ϕ)fj for all ϕ ∈ Hp with all finite p 6∈ Σ.

Then we have

fj ∗ Tp(ϕ) = fFj∗ϕ for all ϕ ∈ ȞJ,p with all finite p 6∈ Σ,

because we have ω̂(j)
p ◦ Tp = ω̂

(j)
J,p by Theorem 2.3.2. The proof is completed.

3.3. Classical theory revisited. In this section, we will reconsider some results
of [E-Z] and [Ibu] from our point of view.

3.3.1. Put V = Q2m (row vectors) and [x, y] = x · Jn ·ty with Jn =
[

0 1n
−1n 0

]
.

Define a polarization V = W ⊕W ′ by

W = {(x, 0) ∈ V | x ∈ Qn}, W ′ = {(0, y) ∈ V | y ∈ Qn}.
Take Z-lattices

L = {(x, 0) ∈ V | x ∈ Zn} ⊂W, L′ = {(0, y) ∈ V | y ∈ Zn} ⊂W ′.

Put U = Q (one-dimensional Q-vector space) and 〈u, v〉 = u · v for u, v ∈ U . Take
a Z-lattice M = Z ⊂ U .

V = HomQ(U, V ) (resp. U = SymQ(U)) is canonically identified with V (resp.
U), and D(x, y) = [x, y] in the notation of 1.1.1. Take S = 1 ∈ U = U . Then
DS(x, y) = [x, y], and W = HomQ(U,W ) (resp. W′ = HomQ(U,W ′)) is canonically
identified with W (resp. W ′). Also L = HomZ(M,L) (resp. L′ = HomQ(M,L′))
is canonically identified with L (resp. L′). Then the conditions (A), (B), (C) and
(D) are fulfilled, and Σ = {2} for a Z-basis {u1 = 1} of M .

The group Γ0 = Sp(L) consists of the
[
a b
c d

]
∈ Sp(n,Z) such that the diagonal

elements of a ·tb and c ·td are all even.

3.3.2. Put

θr(z, w) =
∑
`∈Zn

e∞
{

(`+
r

2
)zt(`+

r

2
) + 2(`+

r

2
)tw
}

for all r ∈ Zn.

Then we have

ϑS(z, w) =
∑

r∈Zn/2Zn

θr(2z, w)(3.3.2.1)
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and the orthogonality relations∫
Cn/L′z

θr(2z, w)θs(2z, w)κS(z, w)dz(w) =

{
det(2 · Im z)−1/2, if r = s,

0, if r 6= s,
(3.3.2.2)

where L′z = {xz + y | x ∈ 2Zn, y ∈ Zn} is a Z-lattice in Cn.

3.3.3. Let S`−1/2(Γ0(4)) be the space of Siegel cusp forms of weight ` − 1/2 with
respect to

Γ0(4) =
{[
a b
c d

]
∈ Sp(n,Z) | c ≡ 0 (mod 4)

}
in the sense of [Ibu]. For any f ∈ S`−1/2(Γ0(4)), put f ′(z) = f(z/2) which is an
element of S`−1/2(Γ̃, ε−1

Γ ) in the notation of 1.4.10. Here

Γ =
{[
a b
c d

]
∈ Sp(n,Z) | b ≡ c ≡ 0 (mod 2)

}
is a subgroup of Γ0. Then f 7→ f ′ is a C-linear isomorphism from S`−1/2(Γ0(4))
onto S`−1/2(Γ̃, ε−1

Γ ) compatible with the Hecke operators.

3.3.4. Let Jcusp
`,1 be the space of Jacobi forms of weight ` and index 1 in the sense

of [Ibu]. Take any F ∈ Jcusp
`,1 . We can write

F (z, w) =
∑

r∈Zn/2Zn

fr(z)θr(z, w)

with holomorphic functions fr.
The function F ′(z, w) = F (2z, w) satisfies the conditions

1) F ′(z, w + xz + y) = e∞(− 1
2 〈x, xz〉S − 〈x,w〉S)F ′(z, w) for all x ∈ 2Zn and

y ∈ Zn,
2) F ′(γ(z), w(cz + d)−1) = det(cz + d)`e∞(1

2 〈wtc, w(cz + d)−1〉S)F ′(z, w) for all

γ =
[
a b
c d

]
∈
[
2 0
0 1

]−1

Sp(n,Z)
[
2 0
0 1

]
,

3) |F ′(z, w)| det(Im z)`/2 exp(−2π〈Imw(Im z)−1, Im, w〉S) is bounded on Hn ×
Cn.

Put

F ′′(z, w) =
∑

h∈Λ/Λ′
F ′(h(z, w))ξS,∞(h)−1ηS(h; z, w).

Here Λ′ = (2Zn × Zn) × R is a normal subgroup of Λ = (Zn × Zn) × R which
is stable under the action of Γ. Then F ′′ is an element of Jcusp

`,S (ΓJ ,1Γ) in the
notation of 1.4.10 with the trivial character 1Γ of Γ. The correspondence F 7→ F ′′

is compatible with Hecke operators. Now we have

fF ′′(z) = 2−n/4
∑

r∈Zn/2Zn

fr(2z)
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in the notation of Theorem 1.4.10. In fact, we have∫
Lz\Cn

F ′′(z, w)ϑS(z, w)κS(z, w)dz(w)

=
∫
Lz\Cn

∑
λ∈Lz/L′z

F ′(z, w + λ)ϑS(z, w + λ)κS(z, w + λ)dZ(w)

=
∫
L′z\Cn

F ′(z, w)ϑS(z, w)κS(z, w)dz(w)

= det(2Im z)−1/2
∑

r∈Zn/2Zn

fr(2z)

by (3.3.2.1) and the orthogonality relations (3.3.2.2). Then∑
r∈Zn/2Zn

fr(2z) ∈ S`−1/2(Γ̃, ε−1
Γ )

by Theorem 1.4.10, and Theorem 3.2.6 implies that the correspondence

F ′′(z, w) 7→
∑

r∈Zn/2Zn

fr(2z)

is compatible with the Hecke operators. Finally, by 3.3.3, the correspondence

F (z, w) 7→
∑

r∈Zn/2Zn

fr(4z)

is a mapping from Jcusp
`,1 into S`−1/2(Γ0(4)) which is compatible with the Hecke

operators. This is the result of [Ibu] and [E-Z].

Appendix A. Automorphic Forms on Locally Compact Groups

A.1. We will recall the definition of the space of automorphic forms on a locally
compact unimodular group [Tak1]. Let G be a locally compact unimodular group
and K be a compact subgroup of G. Let Γ be a closed unimodular subgroup of G
and E be a closed subgroup of Γ∩Z(G) where Z(G) is the center of G. Let ξ be a
continuous unitary character of Γ. Put χ = ξ|E . Let π (resp. δ) be an irreducible
unitary representation of G (resp. K) with representation space Hπ (resp. Vδ). We
shall suppose the following two conditions:
(A) π|E = χ, that is, π(a) is equal to the multiplication by χ(a) for all a ∈ E,
(B) the multiplicity of δ in π|K is equal to one.

A.2. The space Ǎδ(Γ\G, ξ, π) of the automorphic forms on G associated with the
data (G,K,Γ, E; ξ, π, δ) consists of the continuous Vδ-valued functions f on G such
that

1) f(γx) = ξ(γ−1)f(x) for all γ ∈ Γ,

2)
∫

Γ\G
|f(x)|2d(ẋ) <∞,

3) f(xk) = δ(k−1)f(x) for all k ∈ K,

4)
∫
G/E

f(xy−1)ϕ(y)d(ẏ) = ψ̂π,δ(ϕ)f(x) for all ϕ ∈ Cc(G/E, χ, δ)0.

Here Cc(G/E, χ, δ)0 is an involutive C-algebra consisting of the C-valued continuous
functions ϕ on G such that
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i) ϕ(ax) = χ(a−1)ϕ(x) for all a ∈ E,
ii) supp(ϕ) is compact modulo E,
iii) ϕ(kxk−1) = ϕ(x) for all k ∈ K,

iv)
∫
K

eδ(k)ϕ(k−1x)dk = ϕ(x) where eδ(k) = (dim δ)trδ(k).

The Haar measure on K is normalized so that vol(K) = 1. The multiplication is
defined by the convolution

ϕ ∗ ψ(x) =
∫
G/E

ϕ(xy−1)ψ(y)d(ẏ) for ϕ, ψ ∈ Cc(G/E, χ, δ)0.

The involution on Cc(G/E, χ, δ)0 is defined by ϕ∗(x) = ϕ(x−1). Put

ψ̂π,δ(ϕ) = (dim δ)−1

∫
G/E

ϕ(x)ψπ,δ(x)d(ẋ) for ϕ ∈ Cc(G/E, χ, δ)0,

where ψπ,δ(x) = tr(P ◦ π(x) ◦ P ) (x ∈ G) with the orthogonal projection P of Hπ

onto the δ-isotypic component of Hπ.
The space Ǎδ(Γ\G, ξ, π) is a complex Hilbert space with respect to the inner

product

(f, g) =
∫

Γ\G
(f(x), g(x))δd(ẋ)

where ( , )δ is the Hermitian inner product of Vδ.

A.3. Let π̌ (resp. δ̌) be the contragredient representation of π (resp. δ). We
will denote by Ind(G,Γ; ξ−1; π̌) the π̌-isotypic component of the representation
Ind(G,Γ; ξ−1). Let us denote by Ind(G,Γ; ξ−1; π̌, δ̌) the δ̌-isotypic component of
Ind(G,Γ; ξ−1; π̌). Then we have a C-linear isometry

Ǎδ(Γ\G, ξ, π)⊗C V
∗
δ →̃ Ind(G,Γ; ξ−1; π̌, δ̌)

defined by f ⊗ α 7→ (det δ)1/2〈f, α〉. Here V ∗
δ is the complex dual space of Vδ

with the canonical pairing 〈 , 〉 : Vδ × V ∗
δ → C. In particular, the dimension of

Ǎδ(Γ\G, ξ, π) is equal to the multiplicity of π in Ind(G,Γ; ξ).

A.4. Put Cc(G, δ)0 = Cc(G/E, χ, δ)0 with E = {1}. Put

ϕχ(x) =
∫
E

ϕ(xa)χ(a)da for all ϕ ∈ Cc(G, δ)0.

We have a surjective involutive C-algebra homomorphism ϕ 7→ ϕχ of Cc(G, δ)0 to
Cc(G,χ, δ)0. The condition 4) of the definition of Ǎδ(Γ\G, ξ, π) is equivalent to the
condition

4′)
∫
G

f(xy−1)ϕ(y)dy = ψ̂π,δ(ϕ)f(x) for all ϕ ∈ Cc(G, δ)0.
Here we put

ψ̂π,δ(ϕ) = (dim δ)−1

∫
G

ϕ(x)ψπ,δ(x)dx.
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A.5. Let us consider the restricted direct product. Let {Gp}p∈P be a family of
locally compact unimodular groups with a countable index set P . We shall suppose
that there exists a finite subset P∞ of P such that Gp is totally disconnected for
all p 6∈ P∞. Let Kp be a compact subgroup of Gp (p ∈ P ) such that Kp is open in
Gp for all p 6∈ P∞. Let Ep be a closed subgroup of Z(Gp).

Let G be the restricted direct product of {Gp}p∈P with respect to {Kp}p∈P .
Then K =

∏
p∈P Kp is a compact subgroup of G.

Z(G) = G ∩
∏
p∈P

Z(Gp) (resp. E = G ∩
∏
p∈P

Ep)

is the restricted direct product of {Z(Gp)}p∈P (resp. {Ep}p∈P ) with respect to
{Z(Gp) ∩Kp}p∈P (resp. {Ep ∩Kp}p∈P ). Let Γ be a closed unimodular subgroup
of G and ξ be a continuous unitary character of Γ. Put χ = ξ|E .

Let us denote by Êp the Pontryagin dual of Ep. Let Lp be a subgroup of Êp
consisting of the α ∈ Êp such that α(Ep ∩Kp) = 1. Then Lp is an open compact
subgroup of Êp for all p 6∈ P∞. For any element (αp)p∈P of the restricted direct
product

∏′
p∈P Êp with respect to {Lp}p∈P , define a character

⊗
p∈P αp of E by⊗

p∈P
αp(a) =

∏
p∈P

αp(ap) for all a = (ap)p∈P ∈ E.

Then Ê is identified with
∏′
p∈P Êp by

⊗
p∈P αp = (αp)p∈P . So we have χ =⊗

p∈P χp with a suitable χp ∈ Êp.
Let δ be an irreducible unitary representation of K. Then there exists a finite

subset S of P containing P∞ and an irreducible unitary representation δp of Kp for
all p ∈ S such that

δ = (
⊗
p∈S

δp)⊗ (trivial representation of
∏
p6∈S

Kp).

For all p 6∈ S, put δp = 1Kp , the trivial representation of Kp.
Let πp be an irreducible unitary representation of Gp on the representation space

Hp for each p ∈ P such that
1) πp|Ep = χp for all p ∈ P ,
2) for all p 6∈ S, the multiplicity of δp = 1Kp in πp|Kp is equal to one.

Choose, for each p 6∈ S, a Kp-invariant vector vp ∈ Hp of unit length. Let us denote
by
⊗′

p∈P Hp the C-linear span of⊗
p∈P

up ∈
⊗
p∈P

Hp | up = vp for almost all p ∈ P \ S


in
⊗

p∈P Hp. The C-vector space
⊗′

p∈P Hp is a pre-Hilbert space with respect to
the inner product defined by

(
⊗
p∈P

up,
⊗
p∈P

u′p) =
∏
p∈P

(up, u′p) for
⊗
p∈P

up,
⊗
p∈P

u′p ∈
⊗
p∈P

′
Hp.

The completion
⊗̂′

p∈PHp of
⊗′

p∈P Hp with respect to the inner product is called
the completed restricted tensor product of {Hp}p∈P with respect to {vp}p∈P\S.
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Now the group G acts on
⊗′

p∈P Hp by

g ·
⊗
p∈P

up =
⊗
p∈P

πp(gp)up for g = (gp)p∈P ∈ G,
⊗
p∈P

up ∈
⊗
p∈P

′
Hp.

This action is unitary. So the action is extended continuously to the completion⊗̂′
p∈PHp, which is called the (completed) restricted tensor product of {πp}p∈P with

respect to {vp}p∈P\S . Then the (completed) restricted tensor product π =
⊗′

p∈Pπp
with respect to {vp}p∈P\S is an irreducible unitary representation of G such that
π|E = χ. If Cc(Gp/Ep, χp,1Kp)0 is commutative for almost all p ∈ P and Gp is of
type I for all p ∈ P , then all irreducible unitary representations π of G such that
π|E = χ are constructed as above (see §3.2 of [God]).

For any p 6∈ S, let ψ0
p be the characteristic function of Kp in Gp. Then

ϕ0
p = θχp(ψ0

p) in the notation of B.2 is the unity of Cc(Gp/Ep, χp,1Kp)0. The alge-
braic restricted tensor product

⊗′
p∈PCc(Gp/Ep, χp, δp)

0 with respect to {ϕ0
p}p6∈S

is identified with a subalgebra of Cc(G/E, χ, δ)0 by

(
⊗
p∈P

ϕp)(x) =
∏
p∈P

ϕp(xp) for all x = (xp)p∈P ∈ G.

Then
⊗′

p∈PCc(Gp/Ep, χp, δp)
0 is dense in Cc(G/E, χ, δ)0 with respect to the L1-

norm

|ϕ| =
∫
G/E

|ϕ(x)|dẋ for ϕ ∈ Cc(G/E, χ, δ)0.

The action of Cc(G/E, χ, δ)0 on the representation space of any unitary represen-
tation of G is continuous with respect to the L1-norm. So it is enough to consider
the algebraic restricted tensor product of {Cc(Gp/Ep, χp, δp)0}p∈P . Then we have

Proposition. Suppose that the multiplicity of δ in π|K is equal to one (that is,
the multiplicity of δp in πp|Kp is equal to one for all p ∈ P ). Then the space
Ǎδ(Γ\G, ξ, π) of the automorphic forms associated with the data (G,K,Γ, E; ξ, π, δ)
consists of the continuous Vδ-valued functions f on G such that

1) f(γx) = ξ(γ−1)f(x) for all γ ∈ Γ.

2)
∫

Γ\G
|f(x)|2dẋ <∞.

3) f(xk) = δ(k−1)f(x) for all k ∈ K.
4) f satisfies the integral equations∫

G∞/E∞
f(xy−1)

∏
p∈P∞

ϕp(y)dẏ =
∏
p∈P∞

ψ̂πp,δp(ϕp) · f(x)

for all ϕp ∈ Cc(Gp/Ep, χp, δp)0 with all p ∈ P∞. Here we put

G∞ =
∏
p∈P∞

Gp, E∞ =
∏
p∈P∞

Ep.

5)
∫
Gp/Ep

f(xy−1)ϕ(y)dẏ = ψ̂πp,δp(ϕ)f(x) for all ϕ ∈ Cc(Gp/Ep, χp, δp)0 with

all p ∈ P \ P∞.
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Appendix B. Zonal Spherical Functions with a Central Character

B.1. In this appendix, we will recall some basic facts on the zonal spherical func-
tions on a locally compact group and fix some notation for our use.

Let G be a locally compact unimodular group, K be a compact subgroup of G
and E be a closed subgroup of the center of G. Let χ be a continuous unitary
character of E. Let us denote by Ĝ the set of the unitary equivalence classes of the
irreducible unitary representations of G. The Haar measure on K is normalized so
that vol(K) = 1.

B.2. Let Cc(G,E;χ) be the involutive C-algebra consisting of the continuous C-
valued functions ϕ on G such that

1) ϕ is compactly supported modulo E, and
2) ϕ(xa) = χ(a−1)ϕ(x) for all a ∈ E,

with the convolution product

(ϕ ∗ ψ)(x) =
∫
G/E

ϕ(xy−1)ψ(y)dẏ

and the involution ϕ∗(x) = ϕ(x−1). Let us denote by Cc(G//K,E;χ) the involutive
C-subalgebra of Cc(G,E;χ) consisting of the K-biinvariant ϕ, that is, ϕ(kxk′) =
ϕ(x) for all k, k′ ∈ K. With the notation of A.2, we have

Cc(G//K,E;χ) = Cc(G/E, χ,1K)0

where 1K is the trivial representation of K.
For any compact subset M of G, let CM (G,E;χ) be the subspace of Cc(G,E;χ)

consisting of the ϕ such that supp(ϕ) ⊂ME, which is a complex Banach space with
respect to the norm |ϕ| = sup

x∈G
|ϕ(x)|. Endowed with the injective limit topology,

Cc(G,E;χ) = lim−→MCM (G,E;χ) is a locally convex space.
Put Cc(G) = Cc(G, {1};1) and Cc(G//K) = Cc(G//K, {1};1). Put

ϕχ(x) =
∫
E

ϕ(xa)χ(a)da for all ϕ ∈ Cc(G).

Then the mapping θχ : ϕ 7→ ϕχ is a continuous surjective involutive C-algebra ho-
momorphism from Cc(G) to Cc(G,E;χ) such that θχCc(G//K) = Cc(G//K,E;χ).

B.3. Let Ω(G//K) be the set of the zonal spherical functions on G with respect
to K, that is, the set of the continuous C-valued functions ω on G satisfying the
following equivalent conditions:

1) ω is K-biinvariant with ω(1) = 1 and ϕ∗ω = λϕω for all ϕ ∈ Cc(G//K) with
λϕ ∈ C,

2)
∫
K

ω(xky)dk = ω(x)ω(y) for all x, y ∈ G, and ω 6= 0,

3) ω̂ : Cc(G//K) → C is a surjective C-algebra homomorphism where

ω̂(ϕ) =
∫
G

ϕ(x)ω(x)dx for ϕ ∈ Cc(G//K).

Let Ω(G//K,E;χ) be the subset of Ω(G//K) consisting of the ω satisfying the
following equivalent conditions:

i) ω(xa) = χ(a)ω(x) for all a ∈ E,
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ii) there exists a C-algebra homomorphism

α : Cc(G//K,E;χ) → C such that ω̂ = α ◦ θχ.
For an ω ∈ Ω(G//K,E;χ), put

ω̂(ϕ) =
∫
G/E

ϕ(x)ω(x)dẋ for all ϕ ∈ Cc(G//K,E;χ).

Then ω̂ : Cc(G//K,E;χ) → C is a continuous surjective C-algebra homomorphism
such that ω(ϕχ) = ω(ϕ) for all ϕ ∈ Cc(G//K). Conversely, for any continuous
surjective C-algebra homomorphism λ : Cc(G//K,E;χ) → C, there exists uniquely
an ω ∈ Ω(G//K,E;χ) such that ω̂ = λ.

If K is an open subgroup of G, then the last statement is valid without continuity
condition on λ [Tam]. In this case, Cc(G//K) is a C-algebra with unity ϕK the
characteristic function of K in G. Then Cc(G//K,E;χ) also has a unity θχ(ϕK).

B.4. Let us denote by R(G,E;χ) the subset of Ĝ consisting of the π such that
π|E = χ and by R(G//K,E;χ) the subset of R(G,E;χ) consisting of the π with
non-trivialK-invariant vectors. If the algebraCc(G//K,E;χ) is commutative, then
for any π ∈ R(G//K,E;χ), the space of the K-invariant vectors is one-dimensional.
The following two conditions are equivalent:

1) Cc(G//K) is a commutative C-algebra,
2) for any π ∈ Ĝ, the space of the K-invariant vectors of π is at most one-

dimensional.
Suppose Cc(G//K,E;χ) is commutative. Let us denote by Ω+(G//K,E;χ) the
subset of Ω(G//K,E;χ) consisting of the positive ω, that is, the Hermitian ma-
trix (ω(xix−1

j ))i,j is positive definite for all finite subsets {x1, · · · , xn} of G. For
any π ∈ R(G//K,E;χ), take a K-invariant vector v with unit length and put
ωπ(x) = (π(x)v, v) (x ∈ G). Then π 7→ ωπ is a bijection from R(G//K,E;χ) onto
Ω+(G//K,E;χ).

Any ω ∈ Ω+(G//K,E;χ) is a bounded function:

|ω(x)| ≤ ω(1) for all x ∈ G.
Let us denote by Ωb(G//K,E;χ) the subset of Ω(G//K,E;χ) consisting of the
bounded functions.
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