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ON SIEGEL MODULAR FORMS OF
HALF-INTEGRAL WEIGHTS AND JACOBI FORMS
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ABSTRACT. We will establish a bijective correspondence between the space
of the cuspidal Jacobi forms and the space of the half-integral weight Siegel
cusp forms which is compatible with the action of the Hecke operators. This
correspondence is based on a bijective correspondence between the irreducible
unitary representations of a two-fold covering group of a symplectic group and
a Jacobi group (that is, a semidirect product of a symplectic group and a
Heisenberg group). The classical results due to Eichler-Zagier and Ibukiyama
will be reconsidered from our representation theoretic point of view.

INTRODUCTION

Jacobi forms are closely related with modular forms of half-integral weights.
Such a relation is one of three main steps in the proof of Saito-Kurokawa lifting
(other steps are the Fourier-Jacobi expansion of Siegel cusp forms in the Maass
space, and the Shimura correspondence between integral and half-integral weight
modular forms) [E-Z]. Similar relations between Jacobi forms of higher degree and
Siegel modular forms of half-integral weights are studied by [Ibu]. The purpose
of this paper is to study these relations from the representation theoretic point of
view.

The basic idea is quite simple. For the sake of simplicity, we will consider the
relations over the real number field (in this paper, we will work also over p-adic fields
and over the adele ring). Let (V, D) be a symplectic R-space with a polarization
V =W @ W’ (that is, D is a non-degenerate skew-symmetric R-bilinear form on
finite dimensional R-vector space V', and both W and W’ are R-vector subspaces
of V such that D(W, W) = D(W' , W’') =0). Let L and L’ be Z-lattices of W and
W', respectively, such that L & L’ is the self-dual with respect to D. Let G be a
locally compact unimodular group and

p:G— Sp(V)

be a continuous group homomorphism. Let I' be a closed unimodular subgroup
of G such that p(I') C Sp(L) (see 1.2.4 for the notation). Let §;Z7(V) be a non-
trivial two-fold covering group of Sp(V) with covering mapping w, and let G =
G Xsp(v) %(V) be a fiber product with

p:G—Sp(V), wg:G—G
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the canonical projections. Let H[V] =V x R be the Heisenberg group associated
with (V, D) (see 1.2.1). The symplectic group Sp(V) acts on H[V] as an auto-
morphism group. Let G; = G x H[V] be the semi-direct product with respect
to the action of G on H[V] via p. Put Gy = G x H[V] where G acts on H[V]
via wg. Set I' = wg'(T) and Sp(L) = w1(Sp(L)). Then p(I') C Sp(L). Put
I'y=Tx (L& L xR) which is a closed unimodular subgroup of G ;.

Let w be the Weil representation of %(V) which is realized on L?(W). A unitary
representation w, = w o p is extended to an irreducible unitary representation of

G s which is also denoted by w,. We will consider the simplest case of
Wolz(H1v)) = €o

where e (t) = exp2my/—1t is a character of Z(H[V]) = R. Take any unitary
representation 7 of G. Let 7; be the composition of 7 with the canonical projection
of G onto G. Then the correspondence

(1) THT=T;QW

is a bijection between the unitary equivalence classes of the unitary representations
7 of G and the unitary equivalence classes of the unitary representations 7 of G,
such that 7|z (gv)) = €. Also 7 is irreducible if and only if 7 is irreducible.

For example, let us consider an induced representation Ind(G 7, T j; a ® £). Here
«a is a continuous unitary character (1-dimensional unitary representation) of I' and
¢ is a character of (L @ L') x R defined by

1
EN) =ex(t+ §D(:c,y)) for A = ((z,y),t) withz e L,ye L', t € R.
The character a ® £ of Iy is defined by
(@ ®&)(7,A) = a(7)§(A).

Considering Ind(G 5, T j; a®¢) as a representation of é] via its canonical projection
onto GGy, we have

(2) Ind(Gs,Ts;a®€) =nd(G,Tert @ @)y © w,.

Here a is the composition of a with the covering mapping r — T', and er is a
character of I' defined as follows. Let us define a theta series 6, associated with a
Schwartz function ¢ € S(W) by

Op(0) = > (w(o)p) (@) for all o € Sp(V).

leL

Then there exists a character £, o of :S’;)(L) such that

0,(v0) = er,00(7)0,(0) for all v € Sp(L).
Put er = €100 © p. See 1.2.4 for the details.

Let 7 and 7 be irreducible unitary representations of G and G 7, respectively, such
that 7 = 7;®w, where w,, is the contragredient representation of w,. Then (2) shows
that the 7-isotypic component Ind(GJ7 I‘J, a®&; ) of Ind(GJ7 I‘J, a®¢&) corresponds
to the F-isotypic component Ind(G I; EF ® a;7) of Ind(G I E;l ® a). Roughly
speaking, the space of automorphic forms on G associated with 7 corresponds to
the space of the automorphic forms on G associated with 7. How explicitly can the
correspondence be described?
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Suppose that G is a reductive real Lie group with maximal compact subgroup
K such that G/K is a bounded symmetric domain, and p is an (Hy)-group homo-
morphism (that is, the differential of p is an (H;)-homomorphism in the sense of
[Sat5]). (Hi)-group homomorphisms are important for the study of the families of
abelian varieties [Kug], [Mum], [Sat4]. In this case, if 7 is a holomorphic discrete
series of é, then 7 = 77 ® @, is a “holomorphic discrete series” of G (that is, a
holomorphic induction on G; from K x Z(H[V]), see Remark 1.4.6).

Now let (G, H) be a reductive dual pair in Sp(V') such that H is compact and
p be the inclusion of G into Sp(V). This is a typical example of an (H;)-group
homomorphism. Let 7 be a holomorphic discrete series of G and put 7 =7 ® w,.
We know that &, has a minimal K= wg ' (K)-type 6o with multiplicity one [K-V].
Let &' be the minimal K-type of 7. Then 7 has a minimal K-type § = &' ® &
with multiplicity one. This is a phenomenon which is special for the holomorphic
discrete series. Now the d-isotypic component of Ind(G 7, y; e @ &;7) is the space
of (generalized) Jacobi forms on G of weight ¢, index 1 and with a character a.
On the other hand, the §’-isotypic component of Ind(é T, er Y®a; ) is the space of
holomorphic automorphic forms on G of “half-integral weight” 0" with a character
51?1 ® a. A minimal K-type vector of w, produces a classical theta series. So a
Jacobi form and a half-integral weight modular form correspond to each other by
cutting off the theta series, or by integrating against the theta series. This is the
correspondence studied by [E-Z] or [Ibu] (see §3.3). In this paper, we will consider
the case of

G = symplectic group, H = compact orthogonal group.

Other cases are treated similarly. Although we work only over the rational number
field, the cases over the totally real number fields can be treated without any change
in the arguments.

This paper consists of three chapters and two appendices.

In Chapter one, we will work over every local field Q, (p < o0). In §1.1, we
will set up the fundamental framework of this paper. We will define a generalized
Jacobi group and set the fundamental assumptions (A), (B) and (C) of 1.1.2. In
§1.2, we will recall basic facts on the Weil representation. In §1.3, we will establish
the correspondence (1) of unitary representations for our generalized Jacobi group
(Theorem 1.3.3). In §1.4, we will work over the real number field R = Q. This
case is connected directly with the classical treatment of automorphic forms. In
fact, based upon the representation theoretic consideration described above, we
will establish a bijection between cuspidal Jacobi forms (of degree n with a matrix
index) and Siegel cusp forms of half-integral weights of degree n (Theorem 1.4.10).

In Chapter two, we will work only over finite local fields Q, (p < o0). The
correspondence of automorphic forms given by [E-Z] or [Ibu] is compatible with
the action of Hecke operators. This means that we need a C-algebra isomorphism
between the algebra Hj, of Hecke operators on the finite local Jacobi group G,
and the algebra H, of Hecke operators on the finite local covering group ép of
Gp. Such an isomorphism was given by Shintani [Shn] (see Proposition 2.2.1). The
C-algebras ‘H ,, and H, have canonical C-bases which consist of the characteristic
functions of suitable double cosets in G, and ép, respectively (see 2.1.4 and
2.1.5). We will show that the representation matrix, with respect to these canonical
C-bases, of the C-algebra isomorphism given by Shintani is diagonal (Theorem
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2.3.2). A C-algebra homomorphism between H ;, and H,, reflects a correspondence
between the zonal spherical functions on G5, and on ép. This correspondence of
zonal spherical functions contains the correspondence (1) for the class-one unitary
representations of G, and of G, Here, the zonal spherical function associated with
the Weil representation studied in §2.2 plays the fundamental role. In particular,
Proposition 2.2.2 is a key proposition of Chapter two. In §2.4, we will consider the
class-one unitary representations of Gy, and G,. These results will be used in the
global theory of Chapter three.

In Chapter three, we will work over the adele ring. We will establish the corre-
spondence (1) of unitary representations and the identity (2) over the adele ring (or
for the adelized groups). Then choosing carefully the local representations, we will
show the global correspondence of automorphic forms (Theorem 3.1.10). In §3.2,
we will consider the infinite local theory of §1.4 with regard to the Hecke operators.
We will show that the infinite local correspondence of automorphic forms given in
Theorem 1.4.8 (or Theorem 1.4.10 with classical terminology) is compatible with
the action of Hecke operators (Theorem 3.2.6). Finally in §3.3, we will reconsider
the result of [E-Z] and [Ibu] from our point of view.

In the two appendices, we will recall some basic facts which are used throughout
this paper. In Appendix A, we will recall some basic facts on the space of auto-
morphic forms associated with an irreducible unitary representation of a locally
compact unimodular group. See [Takl] for the details. In Appendix B, we will re-
call basic facts on the zonal spherical functions with central character on a locally
compact group.

Notation. The ring of the rational integers is denoted by Z. The field of the rational
numbers (resp. real numbers, complex numbers) is denoted by Q (resp. R, C).

For any finite or infinite place p of Q, the p-adic completion of Q is denoted by
Qp. The closure of Z in Q, is denoted by Z, (s0 Zs = Z). A Haar measure on
Qy is normalized so that vol(Z,) =1 if p < oo, vol([0,1]) = 1 if p = co. The adele
ring of Q is denoted by Q4. Let e = &), e, be the unique continuous character of
Q4 which is trivial on Q and ey (z) = exp 2my/—1z. For a Q-vector space V, put
Vo =V ®qQpand V4 =V ®q Qa. For a Z-module M, put M, = M ®z Zy.

For K-vector spaces U and V over a field K, we will denote by Homg (U, V') the
K-vector space consisting of the K-linear mappings from U to V. Set Endg (V) =
Homg (V, V). For all uw € U and a € Homg (U, V), denoted by ua € V is the image
of u under a. Let us denote by GLk (V') the group of the K-linear isomorphisms
of V onto itself. Take R-vector spaces U, V and set Uc = U ®gr C. The complex
conjugation of u € Ug over U is denoted by @. For any a € Home (Ug, Vi), define
@ € Hom(Ug, V¢) by ua = ua.

For a linear algebraic group G over Q, we will denote by G(K) the group of
the K-rational points for an over-field K of Q. Put Gg = G(Q) and G, = G(Q))
(p < 00).

For a topological space X, denoted by C.(X) is the complex vector space con-
sisting of the compactly supported continuous C-valued functions on X.

Throughout this paper, an induced representation is defined as follows. Let G
be a locally compact unimodular group and H be a closed unimodular subgroup of
G. Then the coset space H\G has a G-invariant measure dg. Let £ be a unitary
representation of H with representation space E¢. Let |- |¢ be the norm of the
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complex Hilbert space Ee¢. Let C.(G, H; &) be a complex vector space consisting of
the He-valued continuous functions ¢ on G such that

(1) p(hg) =&(h)p(g) for all h € H,
(2) the support of ¢ is compact modulo H.

Then the induced representation 7 = Ind(G, H; §) is the completion of C.(G, H; &)
with respect to the norm

ol = /H el for g € CUG.H:)

with the action (7w(g)¢)(z) = p(zg) for ¢ € C.(G, H;&) and g € G.

CHAPTER 1. JACOBI GROUP AND ITS UNITARY REPRESENTATIONS

1.1. Jacobi group.

1.1.1. Let (V,[,]) be a symplectic Q-space with a polarization V.= W @& W".
Z] with ¢ € Endg(W), b €

Homg (W, W'), ¢ € Homg(W’, W) and d € Endg(W’) such that (w,w')o = (wa +
w'e, wb+w'd) for (z,y) € V=W xW'. Let (U, (,)) be a regular quadratic Q-space.
Let LC W, L' Cc W and M C U be Z-lattices such that [L, L] C Z.

Put V = Homg(U, V). For any x € V, there exists a unique *z € Homg(V,U)
such that

An element o € Endg(V) is denoted by o =

(w'z,u) =[v,uzx], foralveV,uel.

For any s € Endg(U), there exists a unique ‘s € Endg(U) such that
(u-ts,u'y = (u,u's), forallu,u’ €U.

Put

U = Symg(U) = {s € Endg(U) | s = s}.

1
For all z,y € V, put D(z,y) = 5(:10 'y —y-'x), which is an element of U because
we have {z -*y) = —y -'x. Then a group law on H[V, D] =V x U is defined by
1

The center of H[V, D] is identified with U by (0, s) = s.
The group of the symplectic similitudes on V'
GSp(V) ={0c € GLy(V) | [zo,yo| = v(o)[z,y],for all z,y € V, v(0) € Q*}

acts on H[V, D] from the right as an automorphism group by (z, s)? = (zo,v(0)s).
Let G and G be algebraic groups over Q such that

Go=5Sp(V)={c € GSp(V) |v(o) =1} and G,q=Sp(V)x H|V,D],

respectively. The semi-direct product is defined by the action of Sp(V') on H[V, D]
described above. We have an identification Z(G)g = U by (1, (0,s)) = s for the
center Z(Gy) of G.
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1.1.2. Take an S € U such that det S # 0. Put Dg(z,y) = tr(S - D(x,y)). Then
Dg is a symplectic form on V. Put

W = Homg(U,W) =V, W =Homg(U,W') — V.

Then V= W & W gives a polarization of V with respect to Dg, and (x,y)s =
Dg(z,y) gives a non-degenerate pairing W x W' — Q. Put

£ =Homz(M,L) — W, [L'=Homgz(M,L)— W
by the Q-linear extension. Define a group homomorphism
p:Sp(V) — Sp(V) by zp(o) = zo.
We will pose the following three conditions throughout this paper:

(A) there exists an ortho-normal Q-basis of U with respect to (),

(B) S =Pt P for some P € GLg(U),

(C) L'={yeW|(L,y)s C Z}.
The conditions (A) and (B) imply that there exists a Q-basis {u1,ug, - ,um} of
U such that (u;S™!, u;) = §;;. We will fix such a Q-basis {u1, -, u,} throughout
this paper. Then we have

(1.1.2.1) (x,y)s = Z[ujx,ujy] forallz e W, y € W'.
j=1
1.1.3. We will denote by M* = {u € U | (u, M) C Z} the dual lattice of M. Then
we have
(1.1.3.1) (LeLl)'zcM* foralze Lo L
Put M = {se€U| Ms C M*} which is a Z-lattice in U. (1.1.3.1) implies that

1
D(z,y) € 5/\/1 forallz,y e L& L'

1.1.4. Fix Z-bases {v1, -+ ,v,} and {v],---,v,} of L and L', respectively, such
that [v;,v;] = dije; with 0 < e; € Z and ejlej41. Identify V' with the Q-vector
space of the row vectors Q" with respect to the Q-basis {vy, -+ ,vp, v}, -+ ,v},} of
V. Then

€1

N . |0 X _
D(v,v") =vJ' w1thJ—[_X 0 , X =

€n

Fix a Z-basis {uy, -+ ,up,} of M, and put Sp = ((uj, u})); j=1,.,m- By means of

the identification U = Q™ with respect to {uf,--- ,u,,}, we have an identification
U = SpSym,,(Q) = Sym,,(Q)S;*, M = Sym,,(Z)S; .

Then the condition (C) of 1.1.2 is equivalent to the condition

(1.1.4.1) SqtS My n(Z) - X = My (Z).

Put v} = e; 'v}. Then {v}, -+ ,v}} is a Z-basis of L* = {y € W' | (L,y) C Z}, the
dual lattice of L.
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1.1.5. Take a finite place p of Q. Suppose that {ui, -+ ,uy} is a Z,-basis of the
Z,-lattice M,. Then the representation matrix of S with respect to {u1, - ,um}
is equal to So = ((us,u;))i, j=1,... m. The condition (1.1.4.1), which is equivalent to
the condition (C) of 1.1.2, implies that X € GL,(Zp). This means that L; = L7,
or {v{,---, vy} is a Z,-basis of L. Under the same assumption, we have M, =
M,S™1, and tr(S - s) € Z,, for all s € M,,.

1.2. Weil representation. In this section, we will recall some basic facts on the
Weil representation. The results are described for Sp(V). Similar notations are
used for Sp(V).

1.2.1. Fix a finite or infinite place p of Q. The Haar measure dw,(w) on W,
(resp. dw;(w’) on W) is normalized so that vol(L,) = 1 (resp. vol(L;) = 1) if
p < oo, vol(Wy,/L,) =1 (resp. vol(W,/L7) = 1) if p = co. A Haar measure on
Vp = W, x W is defined by dy, (w,w’) = dw, (w)dw; (w').

Put H[V,] = V, xQ, with a group law (v, s)- (v/,t) = (v+v,s+t+[v,v']). It is
a locally compact unimodular group and is called the Heisenberg group associated
with the symplectic Q,-space (Vp,[,]). A Haar measure on H[V},] is defined by
dppv,)(v,8) = dy, (v)ds. The group of the symplectic similitudes GSp(V},) acts on
H[V,] from the right by (v,s)? = (vo,v(0)s) as an automorphism group.

1.2.2. The Heisenberg group H[V,] has a unique irreducible unitary representation
I1,, such that I1,(0, s) = e,(s) for all s € Q,. In fact I, is realized on L*(W,,) by

1
(1, (o)) = ol + ey (5 gloal +lwad) (¢ € L207)

for h = ((x,y),s) € H[V,] (x € Wy, y € W}). This realization of II, on L?(W),)
is called the Schrédinger model. Let us denote by Aut(L?(W,)) the group of the
unitary isomorphism of L?(W,,) onto itself. Then Aut(L?(W,)) is a Hausdorff topo-
logical group with respect to the weakest topology such that Aut(L?(W,)) > T
Ty € L*(W,) is continuous for all p € L*(W,). Let Mp(V,) be the closed subgroup
of G, x Aut(L*(W,)) (G, = Sp(V,)) consisting of the (0,T) € G, x Aut(L?(W),))
such that 77! o I, (h) o T = I, (h?) for all h € H[V,]. Then Mp(V,) is a locally
compact group [Igu]. There exists uniquely a continuous group homomorphism
W, : Mp(V,) — C! such that

1) ,(1,A) = A2 for all A € C! — Aut(L3*(W,)),

2) U, (r(c)) = (dete, —1)py, (1) Y for all o = [(2

0,

where (*, x),, is the Hilbert symbol and det ¢ = det([v; ¢, v}]); j=1,2, . ,n. Put r(o) =
(o,r0(0)) € Mp(V,) where

(ro(o)p)(w)

1 1
= | det c|119/2/ o(wa +w'c)e, <§[wa, +w'e,wb +w'd) — §[w, w']) dw; (w')

P

b

d] € G, such that detc #
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for all ¢ € L*(W,) N L'(W,) [Wei]. The Weil number v,(a) for a € Q) is defined

1
as follows. If p = oo, we put v,(a) = e, <§|a—|>, and if p < oo, we put y,(a) =
a

6,(a)/18,(0)] with G,(a) = 3 e,(az?).
T€LZLy /Ly
Put G, = %(Vp) = Ker(¥,) which is a locally compact unimodular group. Let
wp ép — G, be the projection to the first factor. Then ((N?p, wp) is a non-trivial

two-fold covering group of G,. Let us denote by ¢ € G, an element such that
wp(0) =0 € Gp. Put E, = Ker(wp) = {(1,£1)}. The projection to the second
factor wy, : G — Aut(L?(W,)) is a unitary representation of ép on L?(W,), which
is called the Weil representation of G, = Sp(V},).

1.2.3. Put H[L,| = (L,®L;) xQ, which is a closed unimodular subgroup of H[V}].
Define a unitary character &, of H[L,] by & ((w,w’),s) = ey(s + 1[w,w']). The
unitary representation (II,, L?(W,,)) of H[V}] is unitarily equivalent to the induced
representation Ind(H|[V,], H[L,);&p). In fact, for any ¢ € C.(W),), put

0, = [ ot e, (s-+ glo.u]+ 60]) i (O) (h = ((w.w').s) € HIV),

P

where the Haar measure dr,,(¢) on L, is normalized so that vol(L,) = 1, if p < oo,
or the counting measure, if p = oo. Then ¢ — O, is extended to a unitary
isomorphism from (I1,, L?(W})) to Ind(H[V,], H[L,]; €,). The realization of II,, as
Ind(H|[V,], H[Lp); &p) is called the lattice model.

Z] € Sp(V,) such that

1.2.4. Let Sp(Lp) be a group consisting of the v = [Z
1) (Lp® L)y =L, ® L, and
2) [wa +w'c,wr +w'] = [w,w'] (mod 2Z,) for all w € L, and w' € L},.
For any v € Sp(L;), define a unitary automorphism rz, (v) of Ind(H[V,], H[L,]; &)
by
(rr, (V)@)(h) = @(h7).

The automorphism rz, () induces a unitary automorphism on L?(W,) via the
isomorphism given in 1.2.3, which is also denoted by rp, (7). Then v — 1} () =
(7,rL, (7)) is a continuous group homomorphism of Sp(L,) to Mp(V,). If p is an
odd finite place, we have %(Lp) =17, (Sp(Ly)) C G,. For p = 2 or oo, put

%(Lp) = w, 1 (Sp(Ly)) C ép. Then S%(L,,) is an open compact subgroup of C~¥p
for all finite p. -
Let us denote by £y, , the unitary character of Sp(L,) defined by

¥=(,e0,(3) 17, (7) forall § € Sp(Ly).

Note that e1,, = 1 for all p # 2, 00. In particular, we have

0,(75) = eL.00(7)0,(5) for all 5 € Sp(L), & € Sp(Vao)
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and all Schwartz functions ¢ € S(Ws,). Here

0,(5) = (wee(3))(0) (3 € Sp(Vic))

LeL

is the theta series associated with ¢ € S(W).

1.2.5. Let
H[Va] = Vax Qa= [[ HIV)

p<oo
be the restricted direct product of {H[Vp]}p<oo Wor.t. {(Lp® L},) X Zp}ocp<oo- Let
II be an irreducible unitary representation of H[V4] on L?(W,) defined by

(00)2)(w) = ol e s+ loal + sl ) for h=(2.9).5) € HIVa),

Then II is unitarily equivalent to the restricted tensor product of {II,},<cc with
respect to {¢r, }p<oo Where @ € L?(W,) is the characteristic function of L, in
Wp, so we will identify them.

Let Mp(Va) be the closed subgroup of G4 x Aut(L?(W,)) consisting of (o, T) €
Ga x Aut(L?*(Wa4)) such that T=1 o II(h) o T = (k%) for all h € H[V4]. Then
Mp(Vy4) is a locally compact group [Igu].

Let G 4 be the restricted direct product of {G)},< oo With respect to {:S’;)(Lp)}p@o.
Define a continuous group homomorphism

J: C?A — Mp(Va) by J((Upan)pSOO) = ((op)p<oo; ® Tp)'

p<oco

Let Sp(Va) be the image of J which is a closed normal subgroup of Mp(Vy) [Wei].
The projection to the second factor

wa 1 Sp(Va) — Aut(L*(Wa))

is a unitary representation of %(VA) which is called the global Weil representation.
V X Q4 is a closed unimodular subgroup of H[V4]. Define a unitary character
Eaof V xQyu by £a(v,s) =e(s). Put

0, = ¥ ol + e (s + 3l w] + 1w

Lew

for h = ((w,w'),s) € H[V4] and any Schwartz-Bruhat function ¢ € S(W4). Then
¢ — O, is extended to a unitary isomorphism from (II, L?(W4)) onto the induced
representation Ind(H[Va],V x Qa;&4).

For any v € Sp(V), define a unitary automorphism ry (y) of Ind(H[Va],V x
Qua;€a) by (rw(¥)p)(h) = @(hY). The automorphism ry (y) induces a unitary
automorphism of L?(Wy4) via the isomorphism defined above which is also denoted
by rw (y). Then v — ro(y) = (v,rw(y)) is a group homomorphism of Sp(V') into

Sp(Vx) [Wei]. Put
Sp(V) = J M (rg(Sp(V)))

which is a discrete subgroup of G A.
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1.2.6. We have the following product formula.
Proposition.

I e T) =1 for all (4, T,)p<oe € Sp(V) N (%%) < I %(L;») :

p<oo p<oo

Proof. For any Schwartz-Bruhat function ¢ € S(W4), put

0,(s) = Z (wa(s)@)(w) for all s € Sp(Va).
weW

Then we have [Wei]
0,(rg(7)s) = O,(s) for all v € Sp(V), s € Sp(Va).
If we put 0¥ (c) = 0,(J(5)) for o € G4, then we have
0% (75) = 69(5) for all § € Sp(V).

Now set ¢ = @, <., ¥p Where poo € S(Ws) is a Schwartz function and, for all
p < 00, @p is the characteristic function of L, in W,. Then

6%(5,1,1,---) =0, (5) forall 5 € Sp(Vao)
(see 1.2.4). Take any

¥ = (1, Tp)p<oo € Sp(V) N <S”p<voo> < 1] %(Lp>> .

p<oo

By (1.2.4.1), we have
Op (7 To)T) = €1,00(7, Too) 0 (5)  for all & € Sp(Vao).-
On the other hand, we have
Opo (7, To0)T) = 0% (7 (T, (7, Tp)pon)) = 0%(5, (7, Tp)pdo)
= Y (weol@)poo) W) - [T @p(r, T)p) (w)

weW p<oo
= [ c2o(nTp) - 0,.).
p<oo
Then we get the required product formula. O

1.3. Unitary representation of Jacobi group.

1.3.1. Fix a finite or infinite place p of Q. We will denote by Hg[V,,] the Heisenberg
group associated with the symplectic space (V,, Dg). We have a surjective group
homomorphism (z,t) — (z,tr(S - t)) of H[V,, D] onto Hg[V,]. Then H[V,, D] has
a unique irreducible unitary representation Iy, such that IIg ,(0,t) = e,(tr(S - t))
for all t € U,. Let H, be the representation space of Ils,. Ilg, is realized on
H, = L*(W,) by

(spWe)w) =, (1305 0)+ 5ms)s + (wis ) elwsa) (o € L2(W,)
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for h = ((z,y),t) € H[V,, D] (x € Wy, y € W}). Tt is unitarily isomorphic to
Hy = Ind(H[Vy, D], Ap;&s,p) where Ay = (£, © L},) x U, and

£ () = e (0510 + o)

A= ((z,y),t) € Ap) is a unitary character of A,. The unitary intertwining map-
P P
ping ¢ — O, is given by

0,(1) = [ pta-+ 00, (1x(5 00+ 5o)s + (s ) ey (0

P

for any ¢ € Co.(W,) and h = ((z,y),t) € H[V,,D]. The Weil representation w,
of Sp(V,) is realized on H,. Define a character xs, of Z(H[V,,D]) = U, by
Xs,p(t) = ep(tr(S -t)) for t € Up.

1.3.2. We shall define a continuous group homomorphism
Py : Gp = Sp(V,).

First of all, identify L?(W,) with the completed m-fold tensor product @mLQ(Wp)
by

(@) @) =[] i) for; € L*(W,), x € W,
j=1 J=1

Because of (1.1.2.1), we have a continuous group homomorphism (o,7T) — (p(0),
T®™) of Mp(V,) to Mp(V,). Using (1.1.2.1) again, we have

ro(p(0)) =ro(0)®™ for all o = [Z 2] € Sp(Vp) such that det c # 0.
Then we have ¥, (r(p(0))) = ¥,(r(0))™. Now we will define the group homomor-
phism

P Gy — Sp(V,) by pp0,T) = (p(0), T™).

1.3.3. Put G, = G, x H[V,, D], where G, acts on H[V,, D] via the covering
map wp : ép — Gp. Define an irreducible unitary representation wg,, of G Jp by
ws,p(0,h) = wp(pp(d)) ollg p(h) (¢ € Gpand h € H|V,, D]).

For any unitary representation 7 of Gy, let us denote by m; the composition of
7 with the canonical projection of G J,p onto ép. Then we have

Theorem. 7 — m;Quwg,, gives a bijection between the set of the unitary equivalence
classes of the unitary representations of ép and the set of the unitary equivalence
classes of the unitary representations T of éj)p such that T(t) = xs,p(t) for all
t € Z(éJ,p) = U,. 75 ® ws, is irreducible if and only if ™ is. 7; @ wgp 1S
square-integrable modulo the center if and only if m is square-integrable.

This theorem is proved by an argument similar to that in [Sat2].

Remark. The unitary representations of Gy, are regarded as unitary representa-
tions of G, via the canonical projection Gy, — Gjp. Then ™ — 7; ® wg,p, gives
a bijection between the set of the unitary equivalence classes of the unitary rep-

resentations m of ép such that 7|, = v and the set of the unitary equivalence
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classes of the unitary representations 7 of G, such that 7(t) = xs,(¢) for all
t e Z(Gj7p) = Up.

1.4. Infinite local theory. In this section, we will develop our theory over R =

Q-

1.4.1. Let T be a discrete subgroup of G = Sp(Vs) such that p(I') C Sp(L).
An example of such a discrete subgroup is given in 1.4.11. Let o be a unitary
character of . Put I’ = @ }(I') C Goo. Then pn(I') € Sp(L). The invariant mea-
sure on f\éoo is induced from the invariant measure on I'\G, via the topological
isomorphism I'\Goe=T\Goo. A closed unimodular subgroup A = (£ & £') x Use
of H[V, D] is stable under the action of T' via po : Goo — Sp(Veo). The
semi-direct product I'y = I' x Ay is a closed unimodular subgroup of G ;o =
Sp(Vao) X H|[Vo, D]. Define a unitary character o ® £g o, of 'y by

(@ ® &s,00) (7 A) = () - €8,00(A)-
Consider the induced representation 7 = Ind(Gjc0, ;@ ® €5,00). Let us denote
by ™ and a the composition of 7 and « with the canonical projections G Joo —
Gy and r — T", respectively. Then we have ™ = Ind((~}']7oo,fJ;a ® €5,00). Put
7 = Ind(Gso, T;0 @ er') where er is the composition of ez o, with p restricted to

T (see 1.2.4 for the definition of €7 ). Then we have

Theorem. 7; ® wg,« s unitarily equivalent to T by the unitary mapping ¢ @Y —
XY defined by

(p®Y)(o,h) = (T(0)p)(1) - (ws,00(0; R)Y)(1).
Here wg o is realized on Ind(H[Voo, D], Aso; €5,00) -
Proof. By a direct calculation, it is easy to see that the C-linear mapping ¢ ® 9 —
e is G oo-equivariant and | K| = |¢| - [¢|. Put

Oaceo.r(9) = / (@® Es0) (v ) f(rg)dy for f € ColGroo).

For any f1 € C.(G) and fo € C.(H [V, D]), define

f=h®feCGro) by flo,h) = fi(o) fa(h” ).
Then the C-linear span of

{6‘&®Es,oo,f1®f2 | fl € CC(GOO), f2 € CC(H[VOO,D])}

is dense in Ind(G .00, 'y @ @ £5.00). For any ¢ € C.(Goo) and ¢ € Co(H[Voo, D)),
put

buoig o(0) = (@8 )0 o)ty (o € Guc)
and
e v (h) = /A Es0e(N) (AN (h € H[Vao, D)),

respectively. Then the C-linear spans of

{Oagert o | 9 € Ce(Goo)} and {fgs o0 [ ¥ € Ce(H[Voo, D))},
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are dense in
d(Goo, T;a®@ep?) and Ind(H[Vao, Aso; €5.00));

respectively. Take any f = f1 ® f2 (f1 € Ce (Goo), fo € Ce(H[Voo, D])). Then, for
any g = (0,h%) € Gj.o0, we have

Oasee . 1(9) = / dy /A NG () 5,00 (V) i (0) fo (W)Y )
- /fdva<w>—1f1<w>efsmf2(hﬁ

- / dy (@ 71 () 1 (10) (5,00 (7 es o) ()
— (w8,00(0)01.0)(B)

where

O5.0(h) = /Nd’y @@er ) (v f(10)(Ws,00(¥0) g5 pa)(h) (b € H[Vs, D))
r
is an element of Ind(H [V, D], Aso;€s,00)- On the other hand, we have
Ot DO s baces o) = [ do [ dhiplo)s w0
G H[Vo,D]

In fact, we have

(0a®5 & GES oo, 00¢®€s ooyf

/F\G da/m\HV D] dh/dwa@s 0)(ws,00(0)0¢s o) (A7 )
S(@@er )N F1(70) (Ws,00(V g5 12) (hTTT)

/ L / Y0zt (10)F1(70) - (w8,00(10) 0 o B 1)
I

= [0 (T (e O )

Goo
Here we have

(8,00 (0)0¢s. oo s Ots o 1) = (Ots oo s WS,00(0) " Ocs 1)
- / dh / AN BAR) @500 (o) Ben 12 (VB
Asc\H [V ,D] Ao

_ / dhb(h) (@500 () Oes 1) (R).
H[Vm,D]

Now we have
(Oagert o Wes v Vawes . f)

:/ da/ dh/d7
_ Ly -

a®ep ) (1) 9(10) fi(@) e (h) (Ws,00(0) M Oes 1) (R)

/ da/ S dhcp Vb (h)07.5 (1

~—
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which is the required formula. Suppose that

(9a®a;17¢ R Oes o> Oaweso,r) =0 forall p € Ce(Guo), ¥ € Ce(H [V, D).

Then 6, is a zero vector in Ind(H [V, D], Aso;Es,00) for all o € Goo. Hence
Yawes ,f = 0. So we have an isomorphism

Id(Goo, T; 8 @ e51) 7 © Ind(H Voo, D], Aoo; €5.00) = Ind(G .00, T75 @ © Es.00)-
O

1.4.2. The Siegel upper half space associated with the polarization V. =W @& W’
is defined by

Hw = {2z € Syme(We, We) | Im(2) € Symg (Weo, Wi) } -

Here W = Woo ®@rC, Symc (W, W¢) is a C-vector space of the z € Home (W, W()
such that [v,wz] = [w,vz] for all v,w € W¢. We denote by Symy (Wao, W) the
open convex cone of the s € Syme(We, W) such that Woos € W, and [w,ws] > 0
for all 0 # w € Wx. G acts transitively on Hw,; = Hiw x Wi by

9(Z) = (0(2), (w + 2z +y)J(0,2)7")
for g = (0,h) € G0 with h = ((z,y),t) € H|[Vs, D] and Z = (z,w) € Hw, ;. Here
o(z) = (az+b)(cz+d) "' and J(0,2) = cz+d € GLc(WL.) for o = [Z Z] € Sp(Vo)

as usual.
A G o-invariant measure d(z, w) = d(z)d.(w) on Hw, s is defined as follows:

d(z) = det(Im z)~("+1) H d([vi, v;Re 2]) H d([vs, v;Im 2]),

1<i<j<n 1<i<j<n

where det(Imz) = det([v;,v;Im 2]); j—1,... n is the Goo-invariant measure on Hyy
and

d.(w) = det(Im 2) ™" dw:_(Rew)dw:_(Imw).
We have
dy(w') =d,(w) for (z',w'") = g(z,w) with g € G j .
We have also
(1.4.2.1) d.(zz +y) = dw. (x)dw_(y) forallze Wy, yecW,.
Put

Ns(9; Z) = e {tr(S ) + %(:v,;va(z) +y)s + (z,wi (o, z)_1>5

1, , _
—§<w c,wlJ(o,z) 1>5}

for g = (0,h7) € Gjoo with h = ((z,y),t) € H[Vs, D], 0 = {i Z} € G and
Z = (z,w) € Hw,s. Then ns(g; Z) is a factor of automorphy:

ns(99'sZ) =ns(g9:9'(Z))ns(g's Z) forall g, ¢’ € G o0
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Put
Z/ 7) = 1 / — / =\—1 / —
KS( ) )_eOO §<(’U} —’LU)(Z _Z) , W _w>S

for Z = (z,w), Z' = (#',w') € Hivy. Then we have

rks(9(Z2'),9(2)) = ns(g; Z")ws(Z', Z)ns(g; Z)
for all g € Gjoo. Put kKs(2) = ks(Z, Z).

1.4.3. Fix a z9 € Hy which defines a maximal compact subgroup
Ko ={0€Gux|0(20) =20} of Geo.

Put Sw (o, 7) = ew (03 20, 7(20)) for all 0,7 € G where

ew (052, 2) = det /2 <%\/___1(Z)> - det'/? (;/\/—__—j> | det J(a,2")J (0, 2)| 71/

for 0 € G and z, 2z’ € H. Here we put

det_l/QT:/W exp(—m[w, wT))dw._ (w)

for all T € Symc(We, W(.) such that Re(T) = (T+7)/2 € Symg (Wso, W.,). Then
Bw is a C'-valued real analytic 2-cocycle of order two:
(1) Bw(r,0)Bw (o7,8)~ ' Bw (0, 78)Bw (0,7)~" =1 and Br(1,0) = fw(o,1) =1
(2) Bw (o, 7)%=Cw(T)¢w (o7) " ¢w (o) where Cw (o) =det J (o, 20)/| det J (o, 20)]
Let Mp(Ws) = C! x G be a real Lie group with a multiplication law

3

(e,0) (n,7) = (enPw (o, T)v 07—)'

Then Go, is identified with a closed subgroup of the (£,0) € Mp(Wao) such that
g2 = (w(o)™!, and the covering map is we (e, 0) = o [Tak3].
For o = (¢,0) € G and z € Hyy, put

Ji(o,z) = e Yew (0 2, 20)| det J (0, 2) |12

which is real analytic on g € éoo, holomorphic on z € $y and satisfies the relations
[Tak3]

J1(07,2) = J1(0,7(2))J1(7,2) and Ji(o, 2)? = det J(a, 2).

1 1
2 2

Let us denote by d¢ = det? the character k = (e, k) — Ji (k, z0) = e~ of a maximal
compact subgroup Koo = il (Ks) of Gos.

1.4.4. The Siegel upper half space $H is identified with a subspace of Hw by
Hw Dz = [w — wz] € Hw. Then the real Lie group Mp(W,) is defined by

a 2-cocycle By subordinate to zg € Hw — Hw, and the covering group %(VW)
is identified with a closed subgroup of Mp(W,). Under these identifications, the

group homomorphism fa : Geo — Sp(Vao) is expressed by
Doo(e,0) = (€™, p(0)) for all (¢,0) € Goo C Mp(Wiao).
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Let H,, be a complex Hilbert space consisting of the holomorphic C-valued func-
tions ¢ on W such that

f? = /W (o(w)[2rs (20, )day (€) < 0.

’
C

Then the contragredient representation we, of the Weil representation wy, of %(Vm)
is realized on H, [Tak3]. So the contragredient representation wg o of wg o is re-
alized also on H,,.

1.4.5. Let us define the holomorphic discrete series of éoo. Let d¢ be the irreducible
representation of GL¢(W{) of the Young diagram

1127--- ...|gl|
1127 - A
1127 1¢,

with 61 > 4y > --- > £, > 0. Let Vs be the representation space of dc with a
hermitian inner product (,)s such that

(6c(d)v,v")s = (v, 0c((Im 20) " -*d - Tm 2)v")5 for all d € GLec(W{) and v,0' € V.

Then (k) = oc(J(k, z0)) is a unitary irreducible representation of K. It is also
regarded as a representation of K., via the projection onto K,. Put

! _ = -1
’CJ(ZI, Z) = 5(: [(%) . IIDZO

Let Hgg 5 be a complex Hilbert space consisting of the holomorphic Vs-valued
functions ¢ on $Hyy such that

lo? = /ﬁ det(Im z)_m/2</C5(272)_1@(2)7@(2»5‘1(2) < 0.

€ GLc(Vs) (=, 2 € Hw).

The action s 5-m of G on Hgs-m is defined by

(%@55’”(5)@)(2) = J[s@ag’“(a_laz)_l@(a_l(z)) for o € éooa wE H[s@[sgm'
Here we put

Js@s5m (0,2) = dc(J(0,2))J

%(5, z)_m.

If £, —m/2 > n, then (7 ;-m, Hyg 5-m) is the irreducible square-integrable unitary

representation, a so-called holomorphic discrete series, of éoo of minimal K, o-type
§® ;™ = d @ det™™/2. The square-integrable representation Tsgs;m is integrable
if and only if £, — m/2 > 2n. See Chapter VI, §4 and Chapter IX, §7 of [Knp]
for the construction and the minimal K-type of the holomorphic discrete series of
a connected semi-simple real Lie group. It is easy to show that the construction
of the holomorphic discrete series given in [Knp] is equivalent to our construction.
See [H-S] for the integrable discrete series. The arguments of [Knp] and [H-S] can
be applied to our non-linear Lie group Goo.
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1.4.6. Now we will consider the holomorphic discrete series of the Jacobi group
G jo- Let Hs g be a complex Hilbert space consisting of the Vs-valued holomorphic
functions ¢ on $Hyy,; such that

lo]? = /ﬁ (Ks(z,2) Lo(z,w), p(z,w))sk5 (2, w)d(2, w) < oo.

The action 75,5 of G on Hs g is defined by

(m5.5(9)0)(Z) = Js.s(g7", 2) (g7 1(2))

for g € G and ¢ € Hs g. Here we put
J5,5(9:2) = 1s(g; 2) " J5(0, 2)
for g = (0,h) € Gjoo and Z = (z,w) € Hw, ;.

Then (75,5, Hs,s) is an irreducible unitary representation (possibly Hs s = {0}).
Let 75,5 be the composition of 755 with the covering map of G onto G .
Then we proved in [Tak2] that
Theorem. Suppose €, —m/2 > n.

1) Then (7T5®50—m)J ®Ws,00 15 unitarily equivalent to ms g by the unitary mapping

YR — XY defined by
(0 B ) (9(20)) = J5,5(95 Z0) (M5 m (5) 1) (20)
- (@08,00(G, 1) ") (0) - (det Tm )~/
for g =(o,h) € Gy and Zy = (20,0) € Hw,J.

2) The d-isotypic component of T5 g is the tensor product of the § @ 6y ™ -isotypic
component of Ts@oy™ and the 07" = detm/2—isotypic component of Wg . In
particular, the multiplicity of 6 in s g is equal to one.

Remark. The coset space Gjoo/Koo X Us is isomorphic to Hw,s by ¢ — g(Zo).
Then the induced representation Ind(G j o0, Koo X Uso;d ® X;}x}) is realized on a

complex Hilbert space of the locally integrable Vs-valued functions ¢ on $y,; such
that

lo|? = /sa (Ks(z,2) Yo(z,w), o(z,w))sk5(2, w)d(z, w) < oo

with the action
(9-9)(2) = Jss(97 " 2) (g™ (2)) for g € Giees ¢ € Hw,-
In this sense, 755 is a holomorphic induction on G ;. or a holomorphic discrete

series on G j,o0-

1.4.7. The irreducible unitary representation wg, o of G J,00 has the minimal IN(OO—
type 6;™ = det™™/? with multiplicity one ([K-V]). Let us describe the normal
vector in the §; "-isotypic component. Put

¥s(Z) = Zeoo (%(E, lz)s + (f,w>s> for Z = (z,w) € Hw,j.
el

Then we have a transformation formula

Us (('77 /\)Z) = 55700()‘)5F(:71)775((77 /\)7 Z)_l’]% (:}77 Z)_m19S(Z)
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for all (y,A\) €'y =T X Ay [Tak3, Th.5.2]. Put
05,00(9) = 2™ 05 (g Z0)J 1 (5, 20) " Is(9(Zo))

for g = (o,h) € é]7oo = G X H|Vs, D] and Zy = (20,0) € Hw,y. Here we put
g=(0,h) € Gjs. Then we have a transformation formula

O5.00 (7, A7) = E5.00(N)er(7)Os.00(§)  for all (F,A) €Ty =T x Ase.

If wg oo is realized on L*(W), the &, "-isotypic component has a normal base

Yo(z) = det(2Im z0)™ e (%(x,xz(ﬁs) (x € Wo).

The corresponding vector in Ind(H[Ws, D], Aso; €s,00) 18

Oruh) = Y- vl + e (105 00+ s + (.0))

teL
for h = ((x,y),t) € H[Vs, D]. We have

(050 @0) ) = " sl 20) det 2T )" e, (502 + (o)

forall g = (o,h) € §J7OO with & = (¢,0) € Goo and g(Zo) = (z,w) (see the proof
of Th.5.2 in [Tak3]). Then we have a formula

(W8,00(7)Ou0)(1) = O5,00(3) for all € G0
1.4.8. Theorem 1.4.1 and Theorem 1.4.6 imply that the 7; g-isotypic component
in Ind(Gje0, Iy @ €g,00) corresponds to the 7?6®55m—isotypic component in

Ind(Goo, ;6 @ er'). Such a correspondence induces a correspondence between

the spaces of automorphic forms on G and G via the isometry of Appendix
A.3. Let us now describe explicitly the correspondence.

Let us denote by A(I's,a;9,S) the space of the automorphic forms on G
associated with the data

(G7 Ka Fv Ea 57 7T, 5) = (GJ,007 K007 FJa UOO? (OZ ® 55700)_17 775,53 6)
in the sense of Appendix A.2. Let us also denote by A(f, a;0® det_m/2) the space
of the automorphic forms on G, associated with the data
(G,K,T,E;&,m,0) = (Goo, Koo, I, Fac; &' @ e, Tomogms 0 ® 85 ™).
Recall that the multiplicity of § (resp. § @ det™™/?) in 75|k (resp. Togsr™ %)
is equal to one. Then we have
Theorem. A C-linear isometry F +— fr from A(;,«;6,S) onto A(f, a;0 ®
det™™/2) is defined by
I (@) = / F(o,h*)Os5.ma (@, O)d(1).
Aco\H[Voo,D]

Proof. We have 75 g = Togsy ™ OWS,00 by Theorem 1.4.6. It is proved in [Tak2] that
the irreducible unitary representation 75 g of G j o has the minimal K -type § with
multiplicity one which is the tensor product of the § ® ¢, ™-isotypic component of
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Togss™ and the §(*-isotypic component of Wg . For any ¢ € Ind(éoo, I;a® 61?1)
and ¥ € Ind(H[Vo, D], Aso;€s,00) such that || = 1, we have

o(3) = / (¢ B ) (0, 1) (@5, @ B 8) (D) d(h)
Asc\H [V, D]

for all & € Goo. Then we have a C-linear isometry
T :Ind(Geo, L'y @ &5,00; 75,5 5) = Ind(éoo, [;a® 6;1; oo 5 @00
defined by

To)@) = [ o0, 1) B @ )(R), (5 € Cio)
Asc\H [V ,D]

for all ¢ € Ind(GJc0,I'y; ¢ ® €5,00; 75,5;0). Then the isometry of Appendix A.3
gives the required isometry. O

Remark. In §3.2, we will show that the correspondence F' — fp is compatible with
the action of the Hecke operators.

1.4.9. We will give a variation of Theorem 1.4.8. For any F € A(T';,«;6,S), put
F(Z) = Js5,5(9, Z0)F (9) for Z = g(Zo) € Hw,s with g € G o,

which is a well-defined V;-valued function on Hyy, ;.
For any f € AT, a;6 ® det™™/?), put

F(2) = Jygssm (@ 20)f(3) for 2 = 0(z0) € Hw with & € Gu,
which is a well-defined Vs-valued function on $y,. Then we have

Theorem. For any F € A(T;,«;46,5), we have

Fi(2) = 27174 det (Tm 2)™/2 / Pz, w)T5 (. 0)ks (2, w)da (w)
L. \W¢

forall z € Hw. Here L, ={zz+y |z € L,y € L'} is a Z-lattice in W.
Proof. Using the identity

15 (95 Z0)* = ks(9(Zo)) forall g € Goe
and (1.4.2.1), we have

fr(@) = / F(0,h%)O5,00(7, h7)d(h)
Ao \H [V ,D]

=24 J5(0,20) " 1 (G, 20) "™

3! F(h(2,0))05(h(z0)) s (h(z,0))d(h)
Acc\H[Vo,D]
— 2/ det(Tm 2)/2 g s (5, 20) ! / Pz, )05 (2, ks (2, w)da (w).
L \W¢

Here we put z = 0(29) € Hw. Then we have the required formula. O
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1.4.10. We will consider a classical case. Let us suppose that {1 =0y =--- =/, =
£. We shall also suppose that I" is commensurable with

rl)={ceSp(V)| (Lo L')o=La L'}

Let Sp—m (T, a®er') be the space of Siegel cusp forms of weight, £ — % with respect

to I’ with character & ® Er ! that is, the C-valued holomorphic functions f on $
such that

1) f(v(2) =@ @er'(3) - Jy (7, 2)% " f(2) for all F € T,
2) |f(2)| det(Im z)2=™)/4 is bounded on $Hyy.
Let J; ¢ (T'y, @) be the space of the cuspidal Jacobi forms of weight £ and index S
with respect to I'j; with character «, that is, the holomorphic C-valued functions
F on $w,; such that
(1) F(v(2)) = a ®&s,00(7)Js,5(7, Z2)F(Z) for all y € Ty,
(2) |F(z,w)|det(Im z)*/? exp (r(Imw(Im z)~!, Imw)s) is bounded on Hy, ;.
The condition (1) is equivalent to the following conditions:
() F(y(2),w(cz + d)~ 1) = a(y)det(cz + d)’ exp(myv/—{wle,w(cz + d)~1)g) -
b
e
(ii) F(z,w+ 2z +y) = exp2rv/—1(—%(z,22)s — (z,w)s) - F(z,w) for all z € L
and y € L.

F(z,w) for all v =

The condition (2) is equivalent to the following condition:

(iii) for any v € I'(1) X As, the conjugate F7(Z) = Jss(v, Z) " F(v(Z)) has the
Fourier expansion

F'(z,w) = Z a(z, c)e (tr(M~'ez) + (2, w)s)
with a suitable 0 < M € Z. Here Zz,c is the summation over the 2 € £ and
¢ € Sym3 (L', £) such that M~tec — %txx is positive definite.
The notation in the condition (iii) is defined as follows:
Symz (L, L") = {b € Symg(W,W') | Lb C L'},
Symy, (L', L) = {c € Symg(W', W) | tr(be) € Z for all b € Symz(L, L)}
For any # € W, define a 'xzz € Symg(W’, W) such that tr(‘zz - b) = (z, 2b)g for all
b € Symg (W, W’).
If £ —m/2 > 2n, we have an identification
A, &0 @det™™?) = S_m (T,a®ep")

by f(7) — f(2) in the notation of 1.4.9 [Tak3, Th.7.2].
If £ —m/2 > 2n + m/2, we have an identification

A(PJ, Q5 57 S) = JZ‘:ISSP(FJ, a)

by F(g) — F(Z) in the notation of 1.4.9 [Takl, Th.10.3].
Now Theorem 1.4.9 implies the following

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HALF-INTEGRAL WEIGHT SIEGEL MODULAR FORMS AND JACOBI FORMS 755

Theorem. Suppose that £ > 2n + m. Then a C-linear isometry F + fr from
Jys (L) onto Se—m (T',a ® ert) is defined by

fr(z) = gmn/4 det(Imz)m/2/ F(z,w)0s(z,w)ks(z,w)d.(w) (z € Hw).
L. \W.

1.4.11. Let Ty be a subgroup of Sp(V') consisting of the v = [Z Z] € Sp(V') such

that

(1) Lel)yy=Lel,
(2) [va+v'c,vb+v'd] = [v,v] (mod 2Z) for all v € L and v’ € L'.

Let M* be the dual lattice of M in U (see 1.1.3). Then we have
Proposition. If M*S C M, then p(Ty) C Sp(L).

CHAPTER 2. FINITE LocAL THEORY

Through out this chapter, we will fix a finite place p of Q such that

1) {u1, -+ ,um} is a Zy-basis of M,
2) p#2and M, = M, (see 1.1.5).

2.1. Algebras of Hecke operators.

2.1.1. Put H[L,, D] = (£, @ L},) X M, which is an open compact subgroup of
H[V,, D]. The compact group

K, = Sp(Ly) = {o € Sp(Vy) | (L& L*)o = L& L)

acts on H[L,, D]. Then the semi-direct product K, = K, x H[L,, D] is an open
compact subgroup of G . Put Hy, = Co(Gp//Kjp, Up; Xs,p) With the notation
of Appendix B.2.

I?p = %(LZ,) is an open compact subgroup of ép (see 1.2.4 for the definition of
%(Lp)). Then put H, = Co(Gp// Ky, Ep; v,') with the notation of Appendix B.2.
Here E, is the kernel of the covering mapping wy, : ép — Gy, and v, is the unique
non-trivial character of E,.

Proposition. ﬁp(f?p) C %(ﬁp). More precisely, py(ry, (7)) =17 (p(7)) for all
v € Sp(Ly).

Proof. Because {uy,- - ,un} is a Z,-basis of M,, we can identify £, with @™ L,
by £ = (u;{)j=1,... m- Then we have

Oy (h) = H O, ((ujz, ujy), t/m)
j=1

for any ¢ = @/, ¢; € L*(W,) = QL*(W,) and h = ((z,9),t) € Hs[V,] =
Vp x Qp. Here we used the formula (1.1.2.1). Then we have

v, (M) =rr,(p(y)) forall y € Sp(Ly).
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2.1.2. The Haar measure dg, (o) (resp. dy,(s)) is normalized so that vol(kK,) =1

(resp. vol(M,) = 1). The Haar measure de, (o) is normalized so that vol(XK,) = 1.

Let dép/Ep

dg,(0) on G via the canonical isomorphism ép/Ep%Gp. Let dg,(a) be the
counting measure on E,. Then we have an integral formula

(6) be the Haar measure on Gp /E, induced from the Haar measure

/N p(o)dg (o) = /N / e(oa)dp,(a) | dg /B (6) for all p € Cu(G,).
Gp ? Gp/Ep Ep P

2.1.3. With respect to the Q, basis {v1,-- -, vy, 07, -+, v} of V,,, we will identify
G, = Sp(V,) with a matrix group Sp(n,Q,). Then K, is identified with Sp(n,Z,).

For an n-tuple @ = (a1, ,a,) € Z" of integers, put d(p®) = [p . ] € G,

0 p—@
P
with p® = € GL,(Qp). Then we have a double coset decomposi-
P
tion G, = | | Kpd(p®) K, where
a€Y
T:{(al’... 7an) GZTL|0[1 Z ZOénZO}

Proposition. The support of any ¢ € Hy,, is contained in |_| K ,d(p*)K,U,.
acY

Proof. Suppose that ¢(g) # 0 for ¢ = (d(p®),h) € Gy, with h = ((x,y),0) €
H[V,,D] and a € Y. Then for any ¢ € £},, we have

p(9) = ¢(g- (1,(0,£),0))
= @((1,(0,€p%), 0)(d(p"), (x,y), D(,£)))
= ep((z,£)s) " (g).
This means that (z, £},)s C Z, and then z € £,. Similarly for any ¢ € £,,, we have
¢(9) = ¢((1,(£,0),0) - g)
= »((d(p®), (z,y)D(tp®, y))(1, (€p*,0),0))
= e, ({tp™, y)s) " ().
Then (£,,yp*)s C Z, and yp* € L. Now we have

9= (1,(0,yp%), O) ~d(p®) - (1, (=, 0)7 %D(IJ y)) € Kyp- d(p®) - KpUp.
O

2.1.4. For any a € T, let ¢, be the characteristic function of K j,d(p*)K, in
G1p- Then @, is an element of Co(Gyp//Kyp). Put o5 = 0y, (va) € Hiyp in
the notation of Appendix B.2. Then

XS, )1 ingKJ)de‘KJ,U
%,S@)—{ p(1) b K 1,0y

B f = ? b 7t E G .
0 otherwise or g = (o, (z,9),1) J.p

By Proposition 2.1.3, {¢a,s | @ € T} is a C-basis of H .

Proposition. C-algebra H ;) is commutative.
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0o 1,
1, O
Gjp. Then g — ¢’ is an anti-group isomorphism of G, such that dg, ,(¢') =
dg,,(g) and t' =t for all t € U,. We have ¢(g') = ¢(g) for all ¢ € Hj, because
©Ya,5(9") = pa,s(g) for all @ € T. Then a simple calculation shows that H,, is
commutative. O

Proof. Put ¢ = { } € GSp(n,Q,) and ¢’ = eg~te™ € Gy, for all g €

2.1.5. For any a € GLg, (W,), define an operator do(a) € Aut(L?*(W),)) by
(d(a)p)(w) = | detal,*p(wa) (¢ € LX(W,), w € W,).

Then d(a) = ( 8 91} ,do(a)) € Mp(V,) such that ¥,(d(a)) = (det a, —1), with

the Hilbert symbol (x,*),. Put 1, = v,(1)y,(—p) with the Weil number ~,. Then
we have 7 = (p, —1),. Put

d(p®) = (d(p“),np““'do(p“)) €G,

for @ = (a1, -+ , ) € Z™ with |a| = aj + -+ ap. Then we have a double coset
decomposition G = |_| K d(p )K E,.
aeY

For any a € T, let 1, be the characteristic function of I?pa(po‘)f? in é Then
Vo is an element of Co(Gy // Kp). Put ¢a,y = Oum (o) € Hp = Ce(Gp/ ] Ky, Ep; v,
Then {tq,, | @ € T} is a C-basis of H,,.

2.2. Zonal spherical function associated with Weil representation.

2.2.1. The representation wg,, of G Jp on L?(W,) is an irreducible unitary repre-

sentation such that wg p|r,xv, = V5 @ xs,p. The K jp-invariant vectors of L*(W),,)
are the constant multiples of ¢, , the characteristic function of £, in W,. Then

we have the zonal spherical function ®5,(g9) = (ws(9)¢c,,¢c,) (9 € G,p) which
is an element of O (G,/ /K jp, Ep x Up; v} @ x5,p). We have

D) @s,(d(p) = (n -‘QW)

2) supp(®s,) = | | Kspd(p™)Kp - (Ep x Uy).
a€eY
The first equation is due to the fact that ¢, is equal to the m-fold tensor product of
the characteristic function of L, in W, under the canonical identification L?(W,) =
® L2( ») given in 1.3.2. The second is proved by the same argument as that
used in the proof of Proposition 2.1.3, and by the first equation.
The following result is due to Shintani [Shn].

Proposition. For any ¢ € H,, let ¢ be a continuous function on G, defined by
©s(0,h) = p(@)®s, (3, h) for (3,h) € Gy, such that w(F) = o.
Then ¢ — @ gives a C-algebra isomorphism of H, onto Hj,.

Proof. We have only to prove that ¢ — ¢ is a C-algebra homomorphism. The re-
mark on the support of &, given above shows that the mapping is bijective. Recall
that IIg , is an irreducible unitary representation of H[V,, D] which is integrable
modulo U, of formal degree one. Then for all ¢, € 'H,, we have
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(s % 01) (0, h) = /G o PSR, W) T TG H)

— / DT Y(F15) @35 () © sy (W) oz, 92,)
GJVP/EP XUP

X (wsp o g p(h)or,,wsp(@, h)er,)d(T, h')

- / DF I F ) e, o2, N @sp (1) 0 ws (@ Rpz, 5o Doz, )d()

= (e x¥)(0)Ps,(0,h) = (¢ x¥) (0, ).
So p — @y is a C-algebra homomorphism. O
In the next section, we will show that the representation matrix of the inverse
mapping of ¢ — ¢y with respect to the C-basis {¢q,5 | @ € T} of H s, and C-basis

{Ya | @ € T} of H, is diagonal. This is the main result of this chapter (see
Theorem 2.3.2).

2.2.2. The condition (2) of Appendix B.3 implies that &g, satisfies an integral
equation

/N s p(gkg')dk = s, (9)Psp(g)) forall g,g" € éj)p.
Kip

The following proposition is a keystone for the proof of our main result, Theorem
2.3.2.

Proposition. ®g,(ck7) = ®5,(0)®s,(7) for all 0,7 € G, C G, and k € K .

Proof. We can suppose that o = d(p®) and 7 = d(p”) for some «, 3 € Y. Take any
element h~'k of K, where k = ry, (k) with k € K, and h = (((,£),0) € H[L,, D]
with £ € Ly, ¢’ € L},. Then

®5,(d(p®)-h "k - d(p?))
= (ws,p(k) o wsp(d(?)er,, s p(h) 0 wsp(d(P~*))ee,)-
Put
o) = (Hsp(h) 0 ws @A)z, ) (@)
=ey((z,0)s) - prlelp™el 2, o(z+0) (v € W,)

where @ po is the characteristic function of L£,p® in Wy. Then for all (z,y) €
Vp, =W, & W), we have

(2 y) = /£ @+ Nep((h )s)de, (V)

P

_ {n?'“p—m'a/er<—<x +0y)s) i (z,y) € L, & Lyp~®,

0 otherwise
plol
= 05,(d(p)) - ep(—(z +L,)5) D pr o0 @y — N))
j=1
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where ¢z, @, is the characteristic function of £, L), in Vp, and {\; [ 1 < j < plely
is a complete set of representatives of L£,p~*/L;, such that \; € £},. Put

b(@) = (wsp(dP"))ec, ) (@) = s,[d0)er,p5(2) (@€ Wy).
Then for all (z,y) € V, = W, @ Wp, we have

%mm=£¢m+»%wymwxw

_ [ ®sp(d0?) i (z,y) € LpP @ L,
0 otherwise

3
p!P!

= 0, (d(p")) - Z pr oo, (T — i, y)

i=1

where {)\; | 1 < i < plfl} is a complete set of representatives of £,p~"/L, such
that Ay € £,. Now we have

Ds,(d(p®) - h 7'k d(p”)) = (ws,p(k)0y,0,)
/9w$y 8o 9)dv, (x,v)

= 05,(d(p™)) s, (d(P?))

plfBl plel
x}j}j% wa@u«&&ﬂﬁwMﬂ»:A@UeA@AQﬂWA%w
7l
= CI)S,p(d( “)) (I)S,p Z‘PE GBE’ )\uo))

= Dy, (d(p*) s p(d(p?). O
2.3. Isomorphisms of algebras of Hecke operators.

2.3.1. We will start with investigating a relation between the zonal spherical func-
tions on G, and on Gy,.

Lemma. For anyw € Q(ép//f(p, Ep;vyt), letwy be a continuous function on G,
defined by

wy(o,h) = w(@)®s,(F,h)  for (7,h) € Gy, such that w(3) = o.
Then wy € UGyp//Kip, Up; xs.p)-

Proof. We shall verify the defining conditions of Appendix B.3. First of all, wy is
a well-defined and non-zero continuous function on G, which satisfies

1) wy(kgk') = wy(g) for all k, k' € K,
2) wy(gs) = xs,p(s)ws(g) for all s € Up,.
Then the same argument as used in the proof of Proposition 2.1.3 shows that the

support of w; is contained in |_| Kj,d(p*)K,U,. In particular, wy does not
aeY
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vanish at
g = (17 (07 y)7 0) : d(pa) : (17 (il', 0)7 O) € GJ7p
only if (z,y) € £, ® £],. Now we will verify the integral formula

/K wr(ghg)dk = wi(glos(g) (9.9’ € Crp)-

J,p

It is enough to show the integral formula for

9= (15 (O,y),O) : d(pa) ’ (15 (1?,0),0), g/ = (15 (O,y’),()) 'd(pﬂ) ' (15 (1?/,0),0)

for some o, 3 € T. For any £ € L,, we have

J.

wr(gkg')dk = /K ws((1,(£,0),0) - gkg')dk

_ /K wil(g- (1, (p™),0), D(L, ) - ky')dk

J,p

— e,({£,1)5) / w1 (ghg')dk,

Kjyp

and for any ¢’ € L},, we have

/ wy(gkg')dk = / wy(g-(1,(0,£),0) - kg")dk
K‘],p KJ,p

= ey((z,0)3) / s (ghg')dk.

Kip

Similarly we have

J.

wi(ghg')dk = e,((t,1)s) / wr(ghg')dk

J,p Kip

— e,((z', 0)s) / s (ghg')dk

Kyp
for any £ € £, and ¢’ € £}, So if (z,y) € L, ® L}, or (2',y") & L, @ L},, then we

have

/ wi(gkg')dk = 0 = wy(gws(g').
K

J,p

Suppose (z,y), (z',y’) € L, ® L},. Then, by Proposition 2.2.2, we have

/K wrlgkg)dk = [ w @A) kdP))dk

J,p Kip

= /M w(d(p")kd(p”))dkPs,, (d(p*)) 25 (d(p”))

Kp
= w(d(p®)w(d(p®) @5, (d(P*))Psp(d(p?))
=w(gws(g").

Now the integral formula is proved, and we have w; € QUG ,//Kjp, Up; xs,p). O
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2.3.2. In 2.1.3, we defined C-basis {¢q,s | @ € T} and {¢o,, | @ € T} of H;, and
H,,, respectively. Define a C-linear isomorphism 7}, : H s, = H, by
Tp(pa,s) = U;m‘alpm‘awdla,u foralla e Y.

Then our main result in this chapter is

Theorem. 1) T, is a C-algebra isomorphism of Hj, onto H, which is the in-
verse of the lsomorphzsm @ — g given in Proposition 2.2.1.
2) WoT,=wy for allw € Q p//Kp,Ep,V ).

Proof. We will prove the second assertion first. For any w € Q(ép // K s Eps v,
we have

T3 (as) = /G a(9)ws(9)dg

J,p

= wy(d(p™)Cra = w(d(p*))®s, (™)) Cra

5(an) / bolo

w(d(p™))Ca

where Cj, (resp. Cy) is the volume of K ,d(p*)K;, (resp. f{,,&(pa)f(,,) with
respect to the Haar measure on G, (resp. G,). Because of the normalization of
the Haar measures, we have

volg (K, N d(p™) K,pd(p®) ") = volg, (K Nd(p*)Kd(p*) ™).

Then we have C;1C o = p™®l. So & o T, =&y for all w € UG, //K,, Epvt).
Now we will prove the first assertion. For any ¢, € Hj,, we have
B(Tp(px ) = Tp(p)Tp(¥) = @@ ) —wi(p)ws () =0

forallw € Q(ép//f(p, Ey;v)t). This means that T, (o)) =T}, ()T (1)) € Ny Ker A,
where A runs over the surjective C-algebra homomorphism of H,, onto C (see Ap-
pendix B.3). By the isomorphism of Proposition 2.2.1 and by the structure theorem
by [Mur], H, is a domain and is finitely generated as a C-algebra. Then (1, Ker A,
which is the intersection of the maximal ideals of H,, is equal to {0}. So T, is a

C-algebra isomorphism. Take a ¢ € H,,. For any w € Q(G,/ /K Ep;vyt), we have
GoTy(en) = Gilen) = | o(6)855 (3, W(5)Ps (3, W[, h)
G.p/EpxU

_ / (7)) (ws,p() 0 Ts p(R)pe, , oc,)
Gup/EpxUp

(ws,p(a) o s p(h)pr,, pr,)d(T, h)

~ 90(5)w(5)(80£p 0L, (ws,p(0)Lor,,wsp(d) " tec, )d(o)

w(p )

This means that Ao T,(ps) = A(yp) for all surjective C-algebra homomorphisms A
of H, onto C. Then we have T),(¢;) = ¢, that is, T}, is the inverse mapping of
P . |
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2.3.3. By means of the C-algebra isomorphism T}, we can prove the following

Proposition. The correspondence w — wy is a bijection of Q(ép//f(p,Ep;Vg‘)
onto UG jp//Ksp, Ups X5,p)-

Proof. The mapping w — w is injective, because the support of w is contained in
that of ®g ), (see the proof of Lemma 2.3.1). For any w’ € Q(G,,//Kjp, Up; Xs,p),
there exists a surjective C-algebra homomorphism A of H, onto C such that W =
AoT),. Then there exists an w € Q(ép//f?p, Ep;vy) such that & = A. So we have

07 = ' and finally w; = w'. O
2.4. Unitary class-one representations.

2.4.1. When composed with the canonical projection G Jp — Gip, & unitary rep-

resentation of G ;, is identified with a unitary representation of G;,. Under this
identification, the correspondence 7 +— 7; ® wg , of Theorem 1.3.3 gives a bijection

of R(G,, E; vy') onto R(Gjp, Ups xs,p)- On the other hand, since H;, and H,, are
commutative, the general theory of zonal spherical function (see Appendix B.4)
gives a bijection of R(Gp//Kjp, Up; xs,p) onto QT (Gjp//Kjp, Ups xs,p) and of
R(Gp/ /Ky, Ep; vy') onto Q+(G,//Kp, Ey; v'), respectively. We have the following
proposition.

Proposition. A bijection of R(ép//kp,Ep;V;”) onto R(Gyp//Kjp, Up;xs,p) is
given by correspondence T — T = T; Qws,p. We have wr = (wr).

Proof. Take any m € R(Gjp//Kp, Up; xs,p) With the representation space H.
Let F' be the complex vector space consisting of the continuous C-linear mapping
T of L?*(W,) to Hr such that T o Ilg,(h) = w(h) o T for all h € H[V,, D]. Then
F'is a complex Hilbert space with respect to the norm |T'| = sup,¢ 2w, [T¢|/|¢]-
Define a unitary representation 7 of ép on F by 7(6)T = (o) o T o wg ,(d)~! for
all & € G, such that @ () = 0. Then 7 € R(ép//l?p,Ep;u;”) and Ty Quwgp =T
by the unitary isomorphism F®L?(W,) = H, defined by T ® ¢ ~— Ty. Take
a K jp-invariant vector ug € H, such that |ug| = 1. Now T — T, gives a
unitary isomorphism of F onto the subspace of H, consisting of the H[L,, D]-
invariant vectors. Then there exists uniquely a Ty € F such that Tops, = uo.
Since (7(k)To)pc, = uo for all k € K,, Ty € F is a Kp-invariant vector. So
TE ’R(ép//f(p, Ep;v)*). The zonal spherical function wy, of 7 is

(m(g)uo,uo) = (7(7)To, To)(ws,p(T, h)er,, vr,)
=w,(0)Ps,(0,h)

= (w'r)J(g)
for all g = (0,h) € Gjp with 7 € C:*p such that w (o) = 0. |

2.4.2. Proposition 2.4.1 says that the correspondence w — wj of Proposition 2.3.3
gives a bijection of 0 (G/ /K, Ey; i) onto Q*(G,,/ /K 1 p, Ups Xs,p)- Then con-
sider the bounded zonal spherical functions. The correspondence w — wy gives
an injection of QY(G,//K,, Ep; v) into Q°(Gyp/ /K yp Upi Xs,p)- Is it surjective?
This question is related with the growth rate problem stated in [Sat3, Remark 3 to
Theorem 3].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HALF-INTEGRAL WEIGHT SIEGEL MODULAR FORMS AND JACOBI FORMS 763

CHAPTER 3. GLOBAL THEORY

We will suppose the conditions (A),(B),(C) of 1.1.2 and the condition
(D) M*S C M where M* ={u e U | (u, M) C Z} is the dual lattice of M.

Under the condition (D), we have p(Sp(Lp)) C Sp(Ly) for all p < oo (see Propo-
sition 1.4.11). We will fix a finite set ¥ of finite places of Q such that 2 € ¥

and
1) {u1, - ,um} is a Zy-basis of M,
2) M; = M,

for all finite places p of Q outside X.
3.1. Global correspondence of automorphic forms.

3.1.1. For any finite place p of Q, let K, be a open subgroup of Sp(L,) such
that K, = Sp(L,) for all p ¢ ¥. Let K. be a maximal compact subgroup of
Goo = Sp(V) which is the isotropy subgroup of zg € Hw. Put K = Hp<oo K,
which is a compact subgroup of G4. The Haar measure dg, () of G, for p < oo is
normalized so that vol(K,) = 1.

Let

!/
H[VA, D=V xUs= [] HV,, D]
p<oo
be the restricted direct product of { H[V,, D]}p<s with respect to {H[L,, D]}p<oo-
Here H[L,, D] = (£, ® L},) x 1M, is an open compact subgroup of H[V,, D].

G4 acts on H[V4, D], and the semi-direct product Gy a4 = Ga x H[Vy4, D] is
the restricted direct product of {G,}p<oc With respect to K, = K, X H[Lp, D]
(p < ). Then Kj = Ko X Hp<oo K, is a compact subgroup of G 4.

R Put K, :~r’LP(Kp) for 2 < p < oo, arid K, = w, '(K,) for p = 2, 0. ~Then
K =], Ky is a compact subgroup of G 4. The Haar measure d@p (¢) of G, for

p < 00 is normalized so that vol(f(p) =1 for p # 2, and vol(K,) = 2.
G4 acts on H[V 4, D] via

w = pr:éA — Gaga.
p<oco
Then the semi-direct product G JA= GaxH [V 4, D] is the restricted direct product
of {GJp}tp<oo With respect to Ky, = K, x H[L,, D] (p < o).

3.1.2. H[V4, D] has a unique irreducible unitary representation Ilg such that
5(0,t) = e(tr(S - t)) for all t € Ux. It is realized on L*(W 4) by

(1509 (w) = (11(50) + 5ep)s + (wn)s ) ol o) (o € L2(W)
for h = ((z,y),t) € HVa,D] (x € Wy, y € W),). Then IIg is unitarily equivalent
to the restricted tensor product of {Ils,}p<sc with respect to {¢r,}p<oc Where
¢r, € L*(W,) is the characteristic function of £, in W, (see Appendix A.5 for
the definition of the restricted tensor product of representations). Ilg is unitarily
isomorphic to the induced representation Ind(H[V 4, D], A;€s) where A =V x Uy
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and £5(N\) = e(tr(S-t)) (A = (z,t) € A) is a character of A. The unitary intertwining
mapping ¢ — O, is given by

(3.1.2.1) ©,(h) = Z olx + e (tr(S - t) + %(13, y)s + (¢, y>5)

Lew
for any Schwartz-Bruhat function ¢ € S(W4) and h = ((z,y),t) € H[V4, D).

3.1.3. The Weil representation w,, is realized on L*(W,,) for all p < co. Let w4 be
the restricted tensor product of {wp}p<oo With respect to {¢r, }p<coo. Then wy is
realized on L?(W4). It is also realized on Ind(H[V 4, D], A;&g). The intertwining
mapping is given by (3.1.2.1). w4 is a unitary representation of Hp<oo Sp(Vp), the
restricted direct product of {Sp( V) bp<oo With respect to {Sp(L p) p<oo-

The irreducible unitary representation wg,, of G, is realized on L2(W,,) for all
p < 0o. Let wg 4 be the restricted tensor product of {wgp}p<oc With respect to
{cpg }p<oo. Then wg 4 is an irreducible unitary representation of G J,A, and

ws,A(@, h) = wa(p(@)) o Ig(h) for all (7,h) € Gya = Gax H[V4, D,
where
~ !~
p:Ga — H Sp(Vp) (defined by (0p)p<co — (Pp(0p))p<oo)
p<oo

is a continuous group homomorphism which is well-defined by Proposition 2.1.1.

3.1.4. Let G% (resp. C:'i) be the subgroup of G4 (resp. G4) consisting of the
(0p)p<oo such that o, € K, (resp. g, € K,) for all p € ¥. Put G%, = G} x
H[V 4, D] and GJA = Gi x H[V 4, D].

Put G%, = Gy, if p ¢ 3, and G%,, = K, x H[V,, D] if p € ¥. Then G% 4 is
the restricted direct product of {G%,}p<co With respect to {Kp}p<oo. Similarly
put G%, = G, if p ¢ ¥, and G, = K, x H[V,, D] if p € ¥. Then G% , is the
restricted direct product of {G% },<o0 with respect to {K.p}p<oo-

Put wg 4 = ws 4 &3, Which is an irreducible unitary representation of G 4

For any unitary representatiori 7 of é%,}et us denote by 7; the composition of
m with the canonical projection Gi 4 onto G%. Then, similar to Theorem 1.3.3, we
have
Theorem. 7 +— 75 ® wgyA gives a bijection between the set of the unitary equiva-
lence classes of the unitary representations of éi and the set of the unitary equiv-
alence classes of the unitary representations T of G 4 such that 7(t) = e(tr(S - t))

forallt e Z(G 4)=Ua. 7y ®wSA is irreducible if and only if m is. 7y ®wSA 18
square- mtegmble modulo the center if and only if 7 is square-integrable.

3.1.5. Put G = Sp(V)NG% (resp. Gé = Sp(V)NG3) which is a discrete subgroup
of G% (resp. G%). Put G% o = G x H[V, D] which is a discrete subgroup of G ,.
Then Gi@ Uag = Gg X A is a closed unimodular subgroup of G?)A. Define a unitary
character 1 ® &g of G5 - Ua = G x A by

(1®&s)(7,A) =E&s(N) for v € G, A € A
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Consider the induced representation 7 = Ind(G% 4, G?Q ‘Ua;1®&s). Let 7 be the

composition of 7 with the canonical projection é§ a4 Gi 4- Then we have
7 =Ind(G5 4, Ghg Ua- E¥; 1@ ¢&5).

Here we put E* = (H Ep) NG% = Ker(w®) with o> = w|é§ and 1 ® &g is

p<oo
regarded as a character of G5+ Uy - E* via the canonical projection G 4, — G% 4.

We have éé - E¥ = w”!(Gj). Define a character ex of CN%, - E* by
JF) = (Lez(3) ro(r) (v=w() € Gg).
More explicitly

ex(y) = H Ap for ¥ =10 (1, Ap)p<oo With 7o € CN%)’ (1, Ap)p<oo € E™.
p<oo

We have wg 4|gexy, = €% ® &s. Put 7 = Ind(G%, é’é - E¥; ). Then we have

Theorem. 7 ® wE,A is unitarily equivalent to ™ by the unitary mapping ¢ ® 1 —
XY defined by
(R P)(o,h) = (1(0)¢)(1) - (W5 4l h)¥)(1).

Here wg , is realized on Tnd(H[V 4, D], A;€s).

This theorem is proved by using an argument similar to the proof of Theorem
1.4.1.
Remark. The unitary representations of G? 4 are regarded as unitary representa-
tions of G 4 via the canonical projection G% , — G% ,. Then the correspondence
T Ty ® wgyA of Theorem 3.1.4 gives a bijection between the set of the unitary

equivalence classes of the unitary representations 7 of G such that 7|gs = € and
the set of the unitary equivalence classes of the unitary representations 7 of Gi A
such that 7(t) = e(tr(S - t)) for all t € Z(G% 4) = Ua.

3.1.6. Let 6 = @, 0p be an irreducible unitary representation of K such that

1) 6, = 1k, is the trivial representation of K, for all finite p ¢ X,
2) 6, is a finite order character of K, for all p € 3,
3) o corresponds to the Young diagram (given below) with ¢, > fo > -+ >

Ly, >n+m/2.
The representation space of § is denoted by V5 = Vj__.
1127 ... ... | A |
112 [l
(2%,

As remarked at the beginning of this chapter, the condition (D) implies p(Sp(Ls)) C
Sp(L2). Then we have pa(Sp(L2)) C Sp(L2) by the definition of Sp(L2). Define

an irreducible unitary representation § = ®p<oo 0p of K by

1) 5~p = (e£,p 0 pp) @ (0p 0 wp) for all p < oo,

2) boo = det ™2 @ (850 0 Woo).
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Note that gp = 0p 0w, for all 2 < p < co. Then gp is the trivial representation for
all finite p &€ X.
For all finite p, define a unitary character 6, of K, by

Syp(k,h) = 6p(k) - &sp(h)™" for k € Kp, h € H[L,, D).

Note that d,,, is the trivial character for all finite p ¢ ¥. Let §; = doc ® Q)< o, 9p
be an irreducible unitary representation of Ky on the representation space Vs__ .

3.1.7. Let 7, be an irreducible unitary representation of ép or I~(p (p < 00) such
that

1) 7, € R(G,//Kp, Ey; v,') for all finite p € 33,
2) Too = T @o5™ is the holomorphic discrete series of C:'OO with minimal I~(Oo—
type doo ® dp " constructed in 1.4.5,

3) 7, = b, for all p € X.
For all finite p € %, choose a IN(p—invariant vector u, of unit length in the repre-
sentation space of 7,. Recall that the space of the K p-invariant vectors in Tp 1
one-dimensional for all finite p ¢ ¥. Let 7 = ®;§oo Tp be the restricted tensor
product of {7, },<co With respect to {up}pgsufsc}. Then 7 is an irreducible unitary

representation of G% such that the multiplicity of § in T is equal to one. We have
T|ps = e8| g=.

3.1.8. Define an irreducible unitary representation m, of GEP (p < ) by
1) mp =7 ®wg,p for all p ¢ ¥, where &g, is the contragredient representation
of wg p,

2) T, =0, ® Dg,p for all p € ¥.

Here if 52|E2 =y so gg ® wg,2 is trivial on Ey, then m = gg ® wg,2 is regarded as
a representation of G§)2 = K3 x H[V3, D]. On the other hand, for all odd p € X,
if the covering mapping w, gives an isomorphism I?p - K, then m, = (5~p ® Ws,p
is regarded as a representation of G?)p = K, x H[V,,D]. 7o is the holomorphic
discrete series 7g oo 0f Gy o constructed in 1.4.6.

For all finite p € X, the space of the K ,-invariant vectors in m, is one-
dimensional. Choose a K j,-invariant vector v, of m, of unit length. Let m =
®;<OO Tp be the restricted tensor product of {7, },< oo With respect to {v} pgsufoot-
Then 7 is an irreducible unitary representation of G ;4 such that the multiplicity
of 67 in 7|k, is equal to one. We have |y, = & |u,-

3.1.9. For any finite place p of Q, let , be a character of K, = K, x H[L,p, D]
such that

1) ke = (ec20p2) ®Es.2,
2) KJP = 12‘5}7 ® gs_}” fOI‘ all Odd P S E,

3) kp = 17{“) for all finite p & X.
Recall that ¢, € L?(W),) is a C-basis of the k,-isotypic component of wg,. Put
Koo = det™™/2. Then k = &, <o fip 18 a character of Kj. Let ¢ = [L<oo¥p €
S(W4) be a Schwartz-Bruhat function such that ¢, = ¢, for all p < oo:

Poo(2) = det(2Im o)™ *eos (%(w, x20>5) (x € Wqo).
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Then, by the intertwining mapping (3.1.2.1), O, € Ind(H[V, D], A;£4) is a uni-
tary C-basis of the k-isotypic component of wg 4. Put ©s(g9) = (ws,4(9)0,)(1)
(g S GJyA).

3.1.10. Let us denote by A(K ;7 ds,S) the space of the automorphic forms on
G 4 associated with the data

(GvKaI‘vE;gvﬂaa) = (G§,A3KJ5G§Q 'UAaUA;]-@fglvTran)

in the sense of Appendix A.2. Let us also denote by A(K;T, 5~) the space of the
automorphic forms on G% associated with the data

(G,K.T,E;¢,71,0) = (G5, K,G3 - B, E¥ e, 1,0).

Let us denote by 7 (resp. 0,) the composition of 7 (resp. ;) with the canonical
projection Gy 4 — Gy a (resp. K; — K). Then, by the definitions of 7 and ,
we have T = 75 ® wg 4. The Js-isotypic component in 7 is the tensor product of

the g—isotypic component in 7 and the EK-isotypic component in wg 4. Then, by
Theorem 3.1.5 and arguments similar to those in the proof of Theorem 1.4.8, we
have the following theorem.

Theorem. A C-linear isometry F — fg from A(Kj;m 65,5) onto A(I?;T, g) 18
defined by

fe@= [ Ploh)BsGmdh
A\H[V A,D]
Here o € éi is an element such that w(c) = o € G3.

3.2. The action of Hecke operators on the infinite part. Throughout this
section, we will fix the compact groups and their representations defined in 3.1.1
and 3.1.6, respectively.

3.2.1. Put I' = Sp(V) n (GOO 2 | P Kp) which is identified with a discrete

subgroup of G via the projection to Goo. Put I' = w (') which is a discrete
subgroup of G.

Proposition. 1) G% = éé . (éoo 3 | P I?p),
2) (7, Tp)p<oo — (7, To) gives an isomorphism
Ggn <C¥OO < 1] f(p> =T
p<oo
Proof. 1) It is enough to show
G = (V) (éw T f{)

p<oo

Take any 0 = (0p, Tp)p<co € G A. By the strong approximation theorem, we have

Ga=SpV)- <GOO < I K,,) .

p<oo
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S0 Ga 3 (0p)p<oe =7+ (Toos (kp )p<oo) with some 7 € Sp(V), 7oc € Goo and ky €
Kp. Put ky = (kp, T)) = r'L (kp) € K, for 2 < p < 00, ky = (ko, T}) € wy (ko) C
Ky and 7o = (TOO,T/ ) € @2 (7o) C Goo. Then there exists an ¢ € C' such that
Qe LT, 1) =ty ) because J (a (Foo, (kp)p<oo)™ ) € Sp(V,) is projected
onto v € Sp(V). Replacing T4 with € - T4, we have 7 € Sp( ) (Toos (kp)p<oo)

2) Let (0,Tp)p<oo € Sp(V)N (GOO X [lp<oo K ) be such that (0, T ) = 1. Then
o=1and T, =rg,(0) = 1foral 2 <p < oo Finally we have @, . Tp =
rw(o) =1, s0 To = 1. Hence (0,T))p<o0 — (0,T) is an injective group homo-
morphism into I. On the other hand, take any (7,Too) € T. Then v € K, for
all p < o0, so put (v,7p) = r’LP('y) € K, for all 2 < p < oo, and choose any
(7, T2) € @y (y) C Ka. There exists an ¢ € C! such that ry (y) = ¢ - ®p<oo

Replacing T5 with € - Ty, we have (7, T}p)p<oo € Sp(V)n (GOO X [p<oo K ) |
Define a finite order character a of I' by a(y) =[], -, 6p(7)-

3.2.2. Let mo = ms_,5 be the holomorphic discrete series of G ;o constructed in
1.4.6 (see also 3.1.8). Let us denote by ME(KJ7 d,9S) the complex vector space
of the continuous Vs-valued functions F on G% 7.4 satisfying the conditions

1) F(yg) = F(g) for all v € G,

2) F(Ag) =E&s(A\)F(g) for all X € A,
3 [ P (g)Pdg < .
GJ QUA\G/' A
4) F(gk) = 04(k=1)F(g) for all k € K,
5) F satisfies the integral equation
[ Fh emah= b s (9)F()
Gyo0/U
for all ¢ € C'C(GJ,OO/UOO,X;{)O, 87.00)°.
We have

G?,A:G‘z]:,@' <GJ7OO>< H KJ7P>.

p<oo
So, for any F € AT, @; 000, 5), define a Vs-valued function F4 on G?A by
=1 o) ot 9= (g0, Uip)pecc) € G a
oo J,p Yoo Wlth Y S G?Q,goo S GJ,007 k;D € KJ#"

Then F4 is well-defined, and F +— F4 gives a C-linear isometry from A(T' 7, @; 00, S)
onto M*(K;;07,5). In particular, M*(K;5;,5) is a finite dimensional complex
Hilbert space with the inner product

(F,F) = /G @) F sy

For any finite p ¢ X, the algebra of the local Hecke operators
7:(J,p = Ce(Gup/ /K p, Up; XE,;)
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acts on M*(Ky;d,,S) by convolution

(F *)(g) = / F(gz™Yp(z)di for all ¢ € Hj,p.
GJYP/UP

3.2.3. If we take the local representations 7, and the global representation 7 de-
fined in 3.1.8, we have the following proposition.

Proposition. A(Kj;7,8;,5) is the subspace of F € M*(K;;4,S) such that
Fxp=0q(0)F forallpc 7:(J,p

with all finite p ¢ X. Here wy, € Q+(GJ’;D//KJ’;D,U;D;X§;)) is the zonal spherical
function associated with m, € R(Gp//Kp, Up; XE;) (see Appendiz B.4), and

Wr, () = /G o wr, (9)¢(9)dg

(see Appendiz B.3).

Proof. Proposition A.5 in Appendix A implies that A(K ;7 d;,.5) is the subspace
of F € M*(K;6;7,5) such that

/ F(gh™)p(h)dh = s, 5, () F ()
G7,/Up

for all ¢ € C’C(GEP/UP,X;}), 87.)° with all finite p. For all finite p ¢ ¥,
CC(G?,;)/UP’ Xgiav 35.0)° = Ce(Gup/ | Kp, Up; XE;;)v and Y, 5, = Wr,-
Take any p € ¥. For any ¢ € Ce(G,/Up, ngj, §7)°, we have
supp(p) C Kyp - Up
by the same argument as that used in the proof of Proposition 2.1.3. Then we have

/ F(gh™)p(R)dh = p(1)F(g).
G% ,/Up

On the other hand,

L if (z,y) € L, © L),
0 otherwise

Urp 60, (9) = Op(K)E5, () X {

for all g = (k,h) € G5, = K, x H[V,, D] with h = ((x,y),t) € H[Vp, D]. Then we
have

Ui, (9) = @(1) for all o € Ce(GF,/Up, X 01)"-
Then we have the required conditions. O

3.2.4. Let 7o l?ve Ehe holomorphic discrete series of éoo defined in 3.1.7. Let us
denote by M*(K; §) the complex vector space of the continuous Vs-valued functions
f on G% satisfying the conditions

1) f(yo) =@ (y)f(o) for all y € GF - B,

2) [ lf)Pds <o,
GZE=\G%

3) f(ok)=6(k~Y)f(0) forall k € K,
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4) f satisfies the integral equations

-~

/~ floe N )p(@)di = b, 5 ()f (o)
Goo/Ex

for all ¢ € Co(Goo/Foos Voos 000 ).
By Proposition 3.2.1, we have

é;,;é@(éooxnk,,).

p<oo

So, for any f € A(f, Q; 500)7 define a Vj-valued function f4 on éi by

falo) = T Bk ) - flow) O 0= 1 (00 Uidpeoe) € G5

o with 7 € G¥, 00 € G, kp € K.

Then f4 is well-defined, and f — f4 gives a C-linear isomorphism from A(T, &; goo)
onto M*(K;4). Here we use Proposition 1.2.6 and the statement 2) of Proposition
3.2.1. Because of the special normalization of the Haar measure of G5, the mapping

f — fa is isometric. In particular, MZ(I? ,g) is a finite dimensional complex
Hilbert space with respect to the inner product

(f. f) = / (f(o), f'(0))sdo.

G%/E®
For any finite p ¢ X, the algebra of the local Hecke operators
Hy = Ce(Gp// Kp, Ep; V;n)

acts on M>(K;6) by convolution

floz™Hp(x)di  for all ¢ € H,.

Gp/Ep

(oo = [

3.2.5. If we take the local representations 7, and the global representation 7 defined
in 3.1.7, we have the following proposition which is proved by the same argument
as that used for Proposition 3.2.3.

Proposition. A(K:7,0) is the subspace of f € MZ(K;0d) such that
fro=0,(p)f foraleycH,
with all finite p ¢ X. Here w,, € Q+(ép//l~(p, Ep;vy?) is the zonal spherical func-

tion associated with 7, € R(Gp/ /Ky, Ep; vy') (see Appendiz B.4), and

Br, () = / wr, (0)pl0)d6

GP/EP

(see Appendiz B.3).
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3.2.6. Now we will show the main theorem in this section.

Theorem. For any F € M*(K;;67,5), put

fr(0) = / F(o,h)O5(5, h)dh
A\H[V 4,D]

where ¢ € éi is an element such that @w(6) = 0 € G%. Then F — fp is a C-linear

isometry from M*(K;8;,5) onto M*(K;68) which is equivariant with respect to

the actions of Hecke operators:

frep = fr*Tp(p) for all p € Hyy

with all finite p & X.

Proof. We will embed G in éi by 000 = (00, 1,1,--+). Forany f € A(f, &;goo),

we have f4(0s) = f(0s0) for all 0o € Go. We have also

O5(000, h) = O5,00(000, hoo)  for all h € Voo x [] (£, ® L) € H[Va, D).

p<oo

Then, for any F € M*(K;4,,5), we have

fra(0) = / FA(000, h7=)O5(Foo, ho=)dh
VOU(Voo X[ c oo LoBLENVoo X[, 00 LpBL),

- / F (000, h7)05,00 (Goo, h7>)dhn
A\H[Voo,D]

= fF(gm)-

Hence F +— fp is a C-linear isometry from MZ(K,;8,,5) onto MZ(K;d) by
Theorem 1.4.8.
Fix a finite p ¢ ¥. For any ¢ € Hj,, we have

(Fx@,F') = (F,F'«*) forall F,F' € M*(K;6;,5).

Here we put ¢*(g) = ¢(g~!). On the other hand we have ¢}, ¢ = ¢q,s foralla € T
(see 2.1.4 for the notation). Because ., is commutative, Upesugooy Hj,p acts on
M*(K 7;07,8) as normal linear operators which are commutative with each other.
Then there exists an orthonormal C-basis {F}, - - -, F}, } of M*(K j;67,S) such that
each Fj is a common eigenfunction of the linear operators | |,y {00y Hop; that is,
there exists a surjective C-algebra homomorphism
Aff;; :Hjp — C such that Fj o = )\(JJ;Z)(@)FJ- for all ¢ € H,p.
Fix a non-zero o € Vi*. Then Fj o(g) = (Fj(g), @) is a non-zero element of

Ind(G§7A7 G?Q : UA7 1® 55)7

and wf,{%(g) = (9 Fjoar Fjo)|Fja| 72 is an element of QY (Gy,//K 1 p Up; Xs,p)
such that @(sz) = AS{;. Let 75 € R(GJ,p//KJ,p,Up;Xg_;) be the class-one rep-
resentation of G, whose contragredient representation corresponds to wf;; By

Proposition 2.4.1, we have wg; = (T,Sj ))J ® wg,p with a class-one representation
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TISJ') € R(ép//l?p,Ep;u;”) of Gp. Let wz(,j) € Q"’(ép//f{p,Ep;V;”) be the zonal
spherical function associated with TISj ).
Let 7(7) (resp. w(j)) be the global representation defined by the local represen-

tations {T;l(;j)}pgzu{oo} (resp. {W;z(;j)}pgzu{oo}) as in 3.1.7 (resp. 3.1.8). Then F) is
an element of A(K ;7). 6;,5). By Theorem 3.1.10,

1,3) = / Fy(0, )O3 (3, R)di
A\H[Va,D]
is an element of A(f( 0T, 5~) In particular, {f1,---, fn} is an orthonormal C-basis
of M*(K;4) such that
fixp= @Z()j)(go)fj for all ¢ € H,, with all finite p ¢ X.
Then we have
[i*Tp(@) = fryxp forall p € H, with all finite p ¢ %,

because we have ful(jj) oT), = @y; by Theorem 2.3.2. The proof is completed. O

3.3. Classical theory revisited. In this section, we will reconsider some results
of [E-Z] and [Ibu] from our point of view.

3.3.1. Put V = Q> (row vectors) and [z,y] = z - J,, -ty with J,, = [
Define a polarization V =W & W' by
W={(z0€eV]|zeQ"}, W={0yeV]|yecQ"}
Take Z-lattices
L={(z,00eV]xzeZ"ycW, L ={0,y9)eV]yeZ'}cW.

0o 1,
-1, 0]

Put U = Q (one-dimensional Q-vector space) and {(u,v) = u - v for u,v € U. Take
a Z-lattice M =Z C U.

V = Homg(U, V) (resp. U = Symg(U)) is canonically identified with V' (resp.
U), and D(z,y) = [z,y] in the notation of 1.1.1. Take S =1 € U = U. Then
Dg(z,y) = [z,y], and W = Homg(U, W) (resp. W' = Homg(U, W’)) is canonically
identified with W (resp. W’). Also £ = Homgz(M, L) (resp. £ = Homg(M, L"))
is canonically identified with L (resp. L’). Then the conditions (A), (B), (C) and
(D) are fulfilled, and ¥ = {2} for a Z-basis {u; = 1} of M.

The group I'g = Sp(L) consists of the [ﬁ

2] € Sp(n,Z) such that the diagonal

elements of a -'b and ¢ -d are all even.

3.3.2. Put
- “yatea - Tyt n
0.-(z,w) = Z € {(€—|— 2)2 L+ 2) +2(¢ + 2)w} for all r € Z™.
EGZ’H
Then we have
(3.3.2.1) Vg(z,w) = Z 0,2z, w)
rezn j2In
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and the orthogonality relations

det(2-Tmz2)~V/2, if r = s,

(3.3.2.2) /ccn/L' 0,22z, w)05(2z, w)kg(z,w)d, (w) = {O s

where L, = {zz+y | x € 2Z™, y € Z"} is a Z-lattice in C™.

3.3.3. Let S;_1/2(I'0(4)) be the space of Siegel cusp forms of weight ¢ —1/2 with
respect to

r0(4):{[i Z]ESp(n,ZHCEO (mod4)}

in the sense of [Ibu]. For any f € Sy;_1/2(I'0(4)), put f'(z) = f(2/2) which is an
element of Sy_1 /5 (f, 61?1) in the notation of 1.4.10. Here

r:{{z Z} € Sp(n,Z) |b=c=0 (mod2)}

is a subgroup of T'g. Then f +— f’ is a C-linear isomorphism from S;_;/2(T'0(4))
onto Sy_1/2(T, ep 1) compatible with the Hecke operators.

3.3.4. Let J;|"" be the space of Jacobi forms of weight £ and index 1 in the sense
of [Ibu]. Take any F' € J;7"". We can write

F(zyw)= Y fr(2)0,(z,w)

rEZ /27"
with holomorphic functions f,.
The function F’(z,w) = F(2z,w) satisfies the conditions

1) F'(z,w+ 2z +y) = es(—3(z,22)s — (z,w)s)F'(z,w) for all € 2Z" and
yezr,
2) F'(7(2),w(cz +d)~") = det(cz + d)’eso (& (wle,w(cz + d) 1) g) F'(z,w) for all

-1
a b 2 0 2 0
3) |F'(z,w)| det(Im 2)*/? exp(—27(Imw(Im z)~!, Tm, w) ) is bounded on $, x
c.
Put

F"(z,w) Z F'(h(z,w))€5.00(h) " tns(h; 2, w).
heA/A!

Here A’ = (2Z™ x Z™) x R is a normal subgroup of A = (Z" x Z™) x R which
is stable under the action of I'.  Then F” is an element of J,'¢"(I'y,1r) in the
notation of 1.4.10 with the trivial character 1p of I'. The correspondence F— F
is compatible with Hecke operators. Now we have

fro(z)=2""4 N f(22)

rezn /270
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in the notation of Theorem 1.4.10. In fact, we have
| P TSt wi (w)
L.\C

= / Z F'(z,w 4+ N)Vs(z,w+ N)ks(z,w + N)dz(w)
LAC™ zer./Lt

= / F'(z,w)ds(z,w)ks(z, w)d,(w)
L\C™

= det(2Im z)~1/2 Z fr(22)
rezn /22n

by (3.3.2.1) and the orthogonality relations (3.3.2.2). Then
> £r(22) € Spmrpp(Tier)
reZn /27"
by Theorem 1.4.10, and Theorem 3.2.6 implies that the correspondence
F'(z,w) — Z fr(22)
INVAYPYAS
is compatible with the Hecke operators. Finally, by 3.3.3, the correspondence
F(z,w) — Z fr(42)
reZn /27"

is a mapping from JZiSp into Sy_1/2(T'0(4)) which is compatible with the Hecke
operators. This is the result of [Ibu] and [E-Z].

APPENDIX A. AuTOMORPHIC FORMS ON LocaLLy CoMPACT GROUPS

A.1. We will recall the definition of the space of automorphic forms on a locally
compact unimodular group [Takl]. Let G be a locally compact unimodular group
and K be a compact subgroup of G. Let I' be a closed unimodular subgroup of G
and E be a closed subgroup of I' N Z(G) where Z(G) is the center of G. Let £ be a
continuous unitary character of I'. Put x = £|g. Let 7 (resp. d) be an irreducible
unitary representation of G (resp. K) with representation space H, (resp. Vs). We
shall suppose the following two conditions:

(A) 7|g = x, that is, m(a) is equal to the multiplication by x(a) for all a € E,

(B) the multiplicity of ¢ in 7|k is equal to one.

A.2. The space As(T'\G, &, 7) of the automorphic forms on G associated with the
data (G, K, T, E; ¢, m,6) consists of the continuous Vs-valued functions f on G such
that

1) f(yx) =&(y 1) f(x) forall y €T,

2) |f( )Pd() < oo,

3) ( ) (k=1 f(x) for all k € K,

[ ey ew)d@) = des(e)f (@) for all ¢ € Co(G/E,x. )"

Here C. (G /E,x,9)? is an involutive C-algebra consisting of the C-valued continuous
functions ¢ on G such that
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i) p(ax) = x(a™)p(z) for all a € F,
i) su p( ) is compact modulo F,
iii) @(krk™t) = ()forallkEK,

)

es(k)p(k™ z)dk = ¢(x) where es(k) = (dim §)trd(k).

iv

The Haar measure on K is normalized so that vol(K) = 1. The multiplication is
defined by the convolution

o p(x) = / oy YW)d(E) for o, € Co(G/E, x, 6)".
G/E
The involution on C.(G/E, x,d)° is defined by ¢*(x) = p(x~1). Put
Drsl0) = (dim )~ / o(@ma(2)d() for ¢ € Co(G/E, X, 6",
G/E

where 9, s(x) = tr(P o m(x) o P) (x € G) with the orthogonal projection P of H,
onto the d-isotypic component of H.

The space A;(I'\G, &, 7) is a complex Hilbert space with respect to the inner
product

(Fo) = [ (7o) gla)sd(@)
G
where (, )s is the Hermitian inner product of Vj.

A.3. Let 7 (resp. d) be the contragredient representation of 7 (resp. ). We
will denote by Ind(G,T; €67 %) the 7-isotypic component of the representation
Ind(G,T;¢71). Let us denote by Ind(G,T;&6~1;%,0) the d-isotypic component of
Ind(G,T; €71 7). Then we have a C-linear 1sometry

As(D\G, &, 7) ®c V5 = Ind(G,T; €717, 0)

defined by f ® a — (det§)/?(f,a). Here V§ is the complex dual space of Vs
with the canonical pairing (,) : Vs x V5 — C. In particular, the dimension of
As(T\G, &, 7) is equal to the multiplicity of 7 in Ind(G,T';€).

A.4. Put C.(G,8)? = C.(G/E, x,9)° with E = {1}. Put
oy (x) = / o(ra)x(a)da for all ¢ € C.(G,6)°.
E
We have a surjective involutive C-algebra homomorphism ¢ — ¢, of C.(G,§)°

C.(G,x,0)°. The condition 4) of the definition of As(I'\G, &, ) is equivalent to the
condition

/f;vy b dy—wmg( )f(z) for all p € C.(G,4)°.

Here we put

Frs() = (dim6) ! /G (@) 5 (2)d
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A.5. Let us consider the restricted direct product. Let {Gp},ep be a family of
locally compact unimodular groups with a countable index set P. We shall suppose
that there exists a finite subset P, of P such that G, is totally disconnected for
all p ¢ Py. Let K, be a compact subgroup of G, (p € P) such that K, is open in
G)p for all p € Ps. Let E, be a closed subgroup of Z(G)).

Let G be the restricted direct product of {Gp},ep with respect to {K,}pep-
Then K =] K, is a compact subgroup of G.

2(G)=Gn [ 2(Gy) (resp. E=Gn [] Ep)

peP peP

peP

is the restricted direct product of {Z(Gp)}pep (resp. {Ep}tpep) with respect to
{Z(Gp) N Kp}pep (resp. {E, N Ky,}pep). Let T be a closed unimodular subgroup
of G and £ be a continuous unitary character of I'. Put x = §|g.

Let us denote by Ep the Pontryagin dual of E,. Let L, be a subgroup of Ep
consisting of the o € Ep such that a(E, N K,) = 1. Then L, is an open compact
subgroup of E'p for all p ¢ Ps. For any element (ay,),ep of the restricted direct

product H;epﬁp with respect to {L;}pep, define a character @), p o of E' by
® ap(a) = H ap(ap) forall a = (ap)pep € E.
pEP peEP

Then E is identified with H;epﬁp by @,cp@p = (ap)pep. So we have y =

&, p Xp With a suitable x,, € E,.

Let 6 be an irreducible unitary representation of K. Then there exists a finite
subset S of P containing P, and an irreducible unitary representation 4, of K, for
all p € S such that

6= (® dp) ® (trivial representation of H K,).
peS pES

For all p ¢ S, put , = 1k,, the trivial representation of K.
Let 7, be an irreducible unitary representation of GG, on the representation space
H),, for each p € P such that

1) mplE, = xp forall p € P,
2) for all p € S, the multiplicity of 0, = 1k, in 7|k, is equal to one.

Choose, for each p ¢ S, a K-invariant vector v, € H), of unit length. Let us denote
by ®;€P H, the C-linear span of

®up € ®Hp | up = v, for almost all p € P\ S
peP peP

in ®p€ p Hp. The C-vector space ®;e p Hp is a pre-Hilbert space with respect to
the inner product defined by

(® Up, ®u;) = H(up,u;) for ®up, ®u; € ®IHP.

pEP pEP peEP peP peEP peEP

—/
The completion ®p€ pH)y of ®;€ p H, with respect to the inner product is called
the completed restricted tensor product of {H),},ep with respect to {v,},ep\s-
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Now the group G acts on ®;€P H, by

g- ®up = ®7rp(gp)up for g = (gp)pep € G, ®up € ®/Hp.

peP peP peP peP

This action is unitary. So the action is extended continuously to the completion

—/

&, pHp, which is called the (completed) restricted tensor product of {mp},ep with
respect to {vp}pep\s. Then the (completed) restricted tensor product m = ®;€P7Tp
with respect to {v,},ep\s is an irreducible unitary representation of G such that
m|lg = Xx. If Co(Gp/Ep, xp: 1k,)° is commutative for almost all p € P and Gy, is of
type I for all p € P, then all irreducible unitary representations m of G such that
7|g = x are constructed as above (see §3.2 of [God]).

For any p ¢ S, let 4 be the characteristic function of K, in Gp. Then
@) = 0y, (1p) in the notation of B.2 is the unity of Ce(Gy/Ep, Xp, 1x,)°. The alge-
braic restricted tensor product Q' pCe(Gp/Ep, Xp, ,)° with respect to {¢0},¢s
is identified with a subalgebra of C.(G/E, x,9)° by

(® op)(@) = H pp(ap) forall z = (zp)pep € G.

pEP peP

Then @) pCe(Gp/Ep, X, 6p)° is dense in C.(G/E, x,6)° with respect to the L!-
norm

G/E

The action of C.(G/E, x, )" on the representation space of any unitary represen-
tation of G is continuous with respect to the L'-norm. So it is enough to consider
the algebraic restricted tensor product of {C.(Gp/Ep, Xp,0p)° }pep- Then we have

Proposition. Suppose that the multiplicity of § in |k is equal to one (that is,
the multiplicity of 6, in m,|k, is equal to one for all p € P). Then the space
As(T\G, &, ) of the automorphic forms associated with the data (G, K,T, E; &, 7, 0)
consists of the continuous Vs-valued functions f on G such that

1) f(ya) =&(y ) f() for ally €T.

2) / 1f(2)|?dé < oc.

uve

f(xk) =6(k=1)f(x) for all k € K.
f

satisfies the integral equations

—1 . R . i}
/Gm/Em fay™) I eo@di= [] ¥rps, (@) - f(2)

PE P PE P

3)
4)

for all o, € Ce(Gp/Ep, Xp, 0p)° with all p € Ps,. Here we put

Goo =[] Gp» Ex= ][] E»

PEP PEP

5) /G e flay™Nely)dy = aﬂp,ap (@) f(x) for all o € Co(Gp/Ep, Xp,0,)° with
allp e P\ Py
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APPENDIX B. ZONAL SPHERICAL FUNCTIONS WITH A CENTRAL CHARACTER

B.1. In this appendix, we will recall some basic facts on the zonal spherical func-
tions on a locally compact group and fix some notation for our use.

Let G be a locally compact unimodular group, K be a compact subgroup of G
and F be a closed subgroup of the center of G. Let x be a continuous unitary
character of E. Let us denote by G the set of the unitary equivalence classes of the
irreducible unitary representations of G. The Haar measure on K is normalized so
that vol(K) = 1.

B.2. Let C.(G, E; x) be the involutive C-algebra consisting of the continuous C-
valued functions ¢ on G such that

1) ¢ is compactly supported modulo E, and
2) ¢(za) = x(a™1)p(z) for all a € E,

with the convolution product
(o)) = [ play™oln)d
G/E

and the involution ¢*(z) = ¢(x~1). Let us denote by C.(G//K, E; x) the involutive
C-subalgebra of C.(G, E; x) consisting of the K-biinvariant o, that is, ¢(kzk’) =
@(x) for all k, k' € K. With the notation of A.2, we have

Ce(G//K, E;x) = Ce(G/E, x, 1k)"

where 1k is the trivial representation of K.

For any compact subset M of G, let Cys (G, E; x) be the subspace of C.(G, E; x)
consisting of the ¢ such that supp(p) C M E, which is a complex Banach space with
respect to the norm |p| = sup |p(z)|. Endowed with the injective limit topology,

zeG

Ce(G, E;x) = lim Cu (G, E; x) is a locally convex space.
Put C.(G) = C.(G,{1};1) and C.(G//K) = C.(G//K,{1};1). Put

oy (z) = /Etp(za)x(a)da for all p € C.(Q).

Then the mapping 0, : ¢ — ¢, is a continuous surjective involutive C-algebra ho-
momorphism from C.(G) to C.(G, E; x) such that 6,C.(G//K) = C.(G//K, E; x).

B.3. Let Q(G//K) be the set of the zonal spherical functions on G with respect
to K, that is, the set of the continuous C-valued functions w on G satisfying the
following equivalent conditions:

1) wis K-biinvariant with w(1) =1 and ¢ *w = A\,w for all p € C.(G//K) with
Ao €C,

2) / w(zky)dk = w(x)w(y) for all z,y € G, and w # 0,
K
3) W:C.(G//K) — C is a surjective C-algebra homomorphism where
O(p) = / p(@)w(@)dz  for ¢ € Cu(G//K).
G

Let Q(G//K, E; x) be the subset of Q(G//K) consisting of the w satisfying the
following equivalent conditions:

i) w(za) = x(a)w(x) for all a € E,
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ii) there exists a C-algebra homomorphism
a:C.(G//K,E;x) — C such that @ = a0 6.
For an w € Q(G//K, E; x), put

B(p) = /G P Torall 6 € G /K E: )

Then & : C.(G//K, E; x) — C is a continuous surjective C-algebra homomorphism
such that w(ypy) = w(p) for all ¢ € C.(G//K). Conversely, for any continuous
surjective C-algebra homomorphism A : C.(G//K, E;x) — C, there exists uniquely
an w € Q(G//K, E; x) such that @ = A.

If K is an open subgroup of GG, then the last statement is valid without continuity
condition on A [Tam]. In this case, C.(G//K) is a C-algebra with unity ¢k the
characteristic function of K in G. Then C.(G//K, E;x) also has a unity 6, (¢x).

B.4. Let us denote by R(G, E; x) the subset of G consisting of the 7w such that
mlg = x and by R(G//K, E; x) the subset of R(G, E; x) consisting of the 7w with
non-trivial K-invariant vectors. If the algebra C.(G//K, E; x) is commutative, then
for any 7 € R(G//K, E; x), the space of the K-invariant vectors is one-dimensional.
The following two conditions are equivalent:

1) C.(G//K) is a commutative C-algebra,
2) for any m € G, the space of the K-invariant vectors of 7 is at most one-
dimensional.

Suppose C.(G//K, E;x) is commutative. Let us denote by QT (G//K, E;x) the
subset of Q(G//K, E; x) consisting of the positive w, that is, the Hermitian ma-
trix (w(ziz;"))i,; is positive definite for all finite subsets {z1, -+ ,z,} of G. For
any m € R(G//K,E;x), take a K-invariant vector v with unit length and put
wr(x) = (n(x)v,v) (x € G). Then 7 +— w, is a bijection from R(G//K, E;x) onto
O (G/ /K, Eix).

Any w € QT (G//K, E; x) is a bounded function:

lw(z)] <w(l) forallzeG.

Let us denote by Q°(G//K, E;x) the subset of Q(G//K, E;) consisting of the
bounded functions.
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