Gap estimates of the spectrum of Hill’s equation and action variables for KdV
HTML articles powered by AMS MathViewer
- by T. Kappeler and B. Mityagin
- Trans. Amer. Math. Soc. 351 (1999), 619-646
- DOI: https://doi.org/10.1090/S0002-9947-99-02186-8
- PDF | Request permission
Abstract:
Consider the Schrödinger equation $-y'' + Vy = \lambda y$ for a potential $V$ of period 1 in the weighted Sobolev space $(N \in \mathbb {Z}_{\ge 0}, \omega \in \mathbb {R}_{\ge 0})$ \[ H^{N, \omega }(S^1; \mathbb {C}) := \{ f(x) = \sum ^{\infty }_{k= - \infty } \hat {\hat f}(k) e^{i 2 \pi kx} \bigg | \parallel f \parallel _{N, \omega } < \infty \}\] where $\hat {\hat f}(k) (k \in \mathbb {Z})$ denote the Fourier coefficients of $f$ when considered as a function of period 1, \[ \parallel f \parallel _{N, \omega } := \bigg ( \sum _k (1+| k|)^{2N} e^{2 \omega | k |} | \hat {\hat {f}} (k) |^2 \bigg )^{^{1}/2} < \infty ,\] and where $S^1$ is the circle of length 1. Denote by $\lambda _k \equiv \lambda _k (V) (k \ge 0)$ the periodic eigenvalues of $- \frac {d^2}{dx^2} + V$ when considered on the interval $[0,2],$ with multiplicities and ordered so that $Re \lambda _j \le Re \lambda _{j+1} (j \ge 0).$ We prove the following result.
Theorem. For any bounded set ${\mathcal B} \subseteq H^{N, \omega } (S^1; \mathbb {C}),$ there exist $n_0 \ge 1$ and $M \ge 1$ so that for $k \ge n_0$ and $V \in {\mathcal B}$, the eigenvalues $\lambda _{2k}, \lambda _{2k -1}$ are isolated pairs, satisfying (with $\{ \lambda _{2k}, \lambda _{2k-1} \} = \{ \lambda ^+_k , \lambda ^-_k \})$
[(i)] $\sum _{k \ge n_0} (1+k)^{2N} e^{2 \omega k} | \lambda _k^+ - \lambda ^-_k |^2 \le M$,
[(ii)] $\sum _{k \ge n_0} (1 + k)^{2 N+1} e^{2 \omega k} \bigg | (\lambda ^+_k - \lambda ^-_k) -2 \sqrt {\hat {\hat {V}} (k) \hat {\hat {V}}(-k)} \bigg |^2 \le M$.
References
- D. Bättig, A. M. Bloch, J.-C. Guillot, and T. Kappeler, On the symplectic structure of the phase space for periodic KdV, Toda, and defocusing NLS, Duke Math. J. 79 (1995), no. 3, 549–604. MR 1355177, DOI 10.1215/S0012-7094-95-07914-9
- D. Bättig, T. Kappeler, and B. Mityagin, On the Korteweg-de Vries equation: convergent Birkhoff normal form, J. Funct. Anal. 140 (1996), no. 2, 335–358. MR 1409041, DOI 10.1006/jfan.1996.0111
- D. Bättig, T. Kappeler, B. Mityagin, On the Korteweg-de Vries equation: frequencies and initial value problem, Pacific J. Math. 181 (1997), 1–55.
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- B. A. Dubrovin, Igor Moiseevich Krichever, and S. P. Novikov, Integrable systems. I, Current problems in mathematics. Fundamental directions, Vol. 4, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985, pp. 179–284, 291 (Russian). MR 842910
- H. Flaschka and D. W. McLaughlin, Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions, Progr. Theoret. Phys. 55 (1976), no. 2, 438–456. MR 403368, DOI 10.1143/PTP.55.438
- Thomas Kappeler, Fibration of the phase space for the Korteweg-de Vries equation, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 3, 539–575 (English, with French summary). MR 1136595
- Vladimir A. Marchenko, Sturm-Liouville operators and applications, Operator Theory: Advances and Applications, vol. 22, Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob. MR 897106, DOI 10.1007/978-3-0348-5485-6
- H. P. McKean and E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), no. 2, 143–226. MR 427731, DOI 10.1002/cpa.3160290203
- H. P. McKean and E. Trubowitz, Hill’s surfaces and their theta functions, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1042–1085. MR 508448, DOI 10.1090/S0002-9904-1978-14542-X
- Jürgen Pöschel and Eugene Trubowitz, Inverse spectral theory, Pure and Applied Mathematics, vol. 130, Academic Press, Inc., Boston, MA, 1987. MR 894477
Bibliographic Information
- T. Kappeler
- Affiliation: Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Email: tk@math.unizh.ch
- B. Mityagin
- Affiliation: Department of Mathematics, Ohio State University, Columbus, Ohio 43210
- Email: borismit@math.ohio-state.edu
- Received by editor(s): December 5, 1996
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 619-646
- MSC (1991): Primary 58F19, 58F07, 35Q35
- DOI: https://doi.org/10.1090/S0002-9947-99-02186-8
- MathSciNet review: 1473448