A remarkable formula for counting nonintersecting lattice paths in a ladder with respect to turns
HTML articles powered by AMS MathViewer
- by C. Krattenthaler and M. Prohaska
- Trans. Amer. Math. Soc. 351 (1999), 1015-1042
- DOI: https://doi.org/10.1090/S0002-9947-99-01884-X
- PDF | Request permission
Abstract:
We prove a formula, conjectured by Conca and Herzog, for the number of all families of nonintersecting lattice paths with certain starting and end points in a region that is bounded by an upper ladder. Thus we are able to compute explicitly the Hilbert series for certain one-sided ladder determinantal rings.References
- Shreeram S. Abhyankar, Enumerative combinatorics of Young tableaux, Monographs and Textbooks in Pure and Applied Mathematics, vol. 115, Marcel Dekker, Inc., New York, 1988. MR 926272
- Shreeram Abhyankar and Devadatta M. Kulkarni, On Hilbertian ideals, Linear Algebra Appl. 116 (1989), 53–79. MR 989717, DOI 10.1016/0024-3795(89)90398-4
- Winfried Bruns and Jürgen Herzog, On the computation of $a$-invariants, Manuscripta Math. 77 (1992), no. 2-3, 201–213. MR 1188581, DOI 10.1007/BF02567054
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Aldo Conca, Ladder determinantal rings, J. Pure Appl. Algebra 98 (1995), no. 2, 119–134. MR 1319965, DOI 10.1016/0022-4049(94)00039-L
- Aldo Conca and Jürgen Herzog, On the Hilbert function of determinantal rings and their canonical module, Proc. Amer. Math. Soc. 122 (1994), no. 3, 677–681. MR 1213858, DOI 10.1090/S0002-9939-1994-1213858-0
- Sudhir R. Ghorpade, Abhyankar’s work on Young tableaux and some recent developments, Algebraic geometry and its applications (West Lafayette, IN, 1990) Springer, New York, 1994, pp. 215–249. MR 1272033
- Sudhir R. Ghorpade, Young bitableaux, lattice paths and Hilbert functions, J. Statist. Plann. Inference 54 (1996), no. 1, 55–66. MR 1406731, DOI 10.1016/0378-3758(95)00156-5
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1989. A foundation for computer science. MR 1001562
- Jürgen Herzog and Ngô Viêt Trung, Gröbner bases and multiplicity of determinantal and Pfaffian ideals, Adv. Math. 96 (1992), no. 1, 1–37. MR 1185786, DOI 10.1016/0001-8708(92)90050-U
- J. Horn, Über eine hypergeometrische Funktion zweier Veränderlichen, Monatsh. Math. Phys. 47 (1939), 359–379 (German). MR 91, DOI 10.1007/BF01695508
- Christian Krattenthaler, Generating functions for plane partitions of a given shape, Manuscripta Math. 69 (1990), no. 2, 173–201. MR 1072987, DOI 10.1007/BF02567918
- Peter B. Gibbons and Rudolf Mathon, The use of hill-climbing to construct orthogonal Steiner triple systems, J. Combin. Des. 1 (1993), no. 1, 27–50. MR 1303522, DOI 10.1002/jcd.3180010105
- C. Krattenthaler, Counting nonintersecting lattice paths with turns, Sém. Lothar. Combin. 34 (1995), Art. B34i, approx. 17. MR 1399756
- C. Krattenthaler, Non-crossing two-rowed arrays, in preparation.
- C. Krattenthaler and S. G. Mohanty, On lattice path counting by major index and descents, European J. Combin. 14 (1993), no. 1, 43–51. MR 1197475, DOI 10.1006/eujc.1993.1007
- C. Krattenthaler and S. G. Mohanty, Counting tableaux with row and column bounds, Discrete Math. 139 (1995), no. 1-3, 273–285. Formal power series and algebraic combinatorics (Montreal, PQ, 1992). MR 1336843, DOI 10.1016/0012-365X(94)00136-7
- Devadatta M. Kulkarni, Hilbert polynomial of a certain ladder-determinantal ideal, J. Algebraic Combin. 2 (1993), no. 1, 57–71. MR 1210402, DOI 10.1023/A:1022428731241
- Devadatta M. Kulkarni, Counting of paths and coefficients of the Hilbert polynomial of a determinantal ideal, Discrete Math. 154 (1996), no. 1-3, 141–151. MR 1395454, DOI 10.1016/0012-365X(94)00345-J
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- M. R. Modak, Combinatorial meaning of the coefficients of a Hilbert polynomial, Proc. Indian Acad. Sci. Math. Sci. 102 (1992), no. 2, 93–123. MR 1195735, DOI 10.1007/BF02836782
- Bruce E. Sagan, The symmetric group, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1991. Representations, combinatorial algorithms, and symmetric functions. MR 1093239
- G. Viennot, Une forme géométrique de la correspondance de Robinson-Schensted, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976) Lecture Notes in Math., Vol. 579, Springer, Berlin, 1977, pp. 29–58 (French). MR 0470059
Bibliographic Information
- C. Krattenthaler
- Affiliation: Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
- MR Author ID: 106265
- Email: kratt@pap.univie.ac.at
- M. Prohaska
- Affiliation: Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
- Received by editor(s): January 11, 1996
- Additional Notes: The first author was supported in part by EC’s Human Capital and Mobility Program grant CHRX-CT93-0400 and the Austrian Science Foundation FWF, grant P10191-MAT
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 1015-1042
- MSC (1991): Primary 05A15, 13C40; Secondary 05A19, 13F50, 13H10
- DOI: https://doi.org/10.1090/S0002-9947-99-01884-X
- MathSciNet review: 1407495