## Asymptotic formulae with remainder estimates for eigenvalue branches of the Schrödinger operator $H - \lambda W$ in a gap of $H$

HTML articles powered by AMS MathViewer

- by S. Z. Levendorskiĭ
- Trans. Amer. Math. Soc.
**351**(1999), 857-899 - DOI: https://doi.org/10.1090/S0002-9947-99-01994-7
- PDF | Request permission

## Abstract:

The Floquet theory provides a decomposition of a periodic Schrödinger operator into a direct integral, over a torus, of operators on a basic period cell. In this paper, it is proved that the same transform establishes a unitary equivalence between a multiplier by a decaying potential and a pseudo-differential operator on the torus, with an operator-valued symbol. A formula for the symbol is given. As applications, precise remainder estimates and two-term asymptotic formulas for spectral problems for a perturbed periodic Schrödinger operator are obtained.## References

- D. K. Gvazava,
*A general integral of a class of nonlinear equations and its applications*, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR**90**(1988), 68–75 (Russian). MR**975696** - Richard Beals,
*Weighted distribution spaces and pseudodifferential operators*, J. Analyse Math.**39**(1981), 131–187. MR**632460**, DOI 10.1007/BF02803334 - M. Sh. Birman,
*Discrete spectrum in the gaps of a continuous one for perturbations with large coupling constant*, Estimates and asymptotics for discrete spectra of integral and differential equations (Leningrad, 1989–90) Adv. Soviet Math., vol. 7, Amer. Math. Soc., Providence, RI, 1991, pp. 57–73. MR**1306508** - Birman, M.Š.: On the discrete spectrum in the gaps of a perturbed periodic second order operator. Funct. Anal. Appl. 25, No 4, 158-161 (1991)
- M. Š. Birman and M. Z. Solomjak,
*Asymptotic properties of the spectrum of differential equations*, Mathematical analysis, Vol. 14 (Russian), Akad. Nauk SSSR Vsesojuz. Inst. Naučn. i Tehn. Informacii, Moscow, 1977, pp. 5–58, i. (loose errata) (Russian). MR**0467022** - M. Š. Birman and M. Z. Solomjak,
*Spektral′naya teoriya samosopryazhennykh operatorov v gil′bertovom prostranstve*, Leningrad. Univ., Leningrad, 1980 (Russian). MR**609148** - Percy A. Deift and Rainer Hempel,
*On the existence of eigenvalues of the Schrödinger operator $H-\lambda W$ in a gap of $\sigma (H)$*, Comm. Math. Phys.**103**(1986), no. 3, 461–490. MR**832922** - F. Gesztesy and B. Simon,
*On a theorem of Deift and Hempel*, Comm. Math. Phys.**116**(1988), no. 3, 503–505. MR**937772** - Rainer Hempel,
*On the asymptotic distribution of the eigenvalue branches of the Schrödinger operator $H\pm \lambda W$ in a spectral gap of $H$*, J. Reine Angew. Math.**399**(1989), 38–59. MR**1004132**, DOI 10.1515/crll.1989.399.38 - Lars Hörmander,
*The analysis of linear partial differential operators. III*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. Pseudodifferential operators. MR**781536** - Victor Ivriĭ,
*Precise spectral asymptotics for elliptic operators acting in fiberings over manifolds with boundary*, Lecture Notes in Mathematics, vol. 1100, Springer-Verlag, Berlin, 1984. MR**771297**, DOI 10.1007/BFb0072205 - Khryashchev, S.V.: Asymptotics of the discrete spectrum of the perturbed Hill operator. Zap. LOMI, 147, 188-189 (1985); English transl. in J. Soviet Math. 32 (1986), no. 2.
- S. V. Khryashchëv,
*On the discrete spectrum of a perturbed periodic Schrödinger operator*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**190**(1991), no. Issled. po Lineĭn. Oper. i Teor. Funktsiĭ. 19, 157–162, 187–188 (Russian, with English summary); English transl., J. Math. Sci.**71**(1994), no. 1, 2269–2272. MR**1111917**, DOI 10.1007/BF02111298 - S. Z. Levendorskiĭ,
*The approximate spectral projector method*, Izv. Akad. Nauk SSSR Ser. Mat.**49**(1985), no. 6, 1177–1228, 1342 (Russian). MR**816853** - S. Z. Levendorskiĭ,
*Nonclassical spectral asymptotics*, Uspekhi Mat. Nauk**43**(1988), no. 1(259), 123–157, 247 (Russian); English transl., Russian Math. Surveys**43**(1988), no. 1, 149–192. MR**937021**, DOI 10.1070/RM1988v043n01ABEH001541 - Serge Levendorskiǐ,
*Asymptotic distribution of eigenvalues of differential operators*, Mathematics and its Applications (Soviet Series), vol. 53, Kluwer Academic Publishers Group, Dordrecht, 1990. Translated from the Russian. MR**1079317**, DOI 10.1007/978-94-009-1918-1 - G. D. Raĭkov,
*Eigenvalue asymptotics for the Schrödinger operator with perturbed periodic potential*, Invent. Math.**110**(1992), no. 1, 75–93. MR**1181817**, DOI 10.1007/BF01231325 - Michael Reed and Barry Simon,
*Methods of modern mathematical physics. I. Functional analysis*, Academic Press, New York-London, 1972. MR**0493419** - Rozenbljum, G.V., Solomyak, M.Z., Shubin, M.A. Spectral theory of differential operators. Itogi Nauki i Tekniki: Sovremennye Problemy Mat.: Fundamental’nye Napravleniya, vol. 64, VINITI, Moscow, 1989; English transl., Encyclopaedia of Math. Sci., vol 64 (Partial Differential Equatons, VII, Springer-Verlag, 1994.
- R. T. Seeley,
*Complex powers of an elliptic operator*, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 288–307. MR**0237943** - A. V. Sobolev,
*Weyl asymptotics for the discrete spectrum of the perturbed Hill operator*, Estimates and asymptotics for discrete spectra of integral and differential equations (Leningrad, 1989–90) Adv. Soviet Math., vol. 7, Amer. Math. Soc., Providence, RI, 1991, pp. 159–178. MR**1306512**

## Bibliographic Information

**S. Z. Levendorskiĭ**- Affiliation: Rostov Institute of National Economy, Engels’a 69, 344798, Rostov-on-Don, Russia
- Email: leven@ns.rnd.runnet.ru
- Received by editor(s): May 15, 1995
- Received by editor(s) in revised form: December 9, 1995
- Additional Notes: The author was supported in part by ISF grant RNH 000
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**351**(1999), 857-899 - MSC (1991): Primary 35P20
- DOI: https://doi.org/10.1090/S0002-9947-99-01994-7
- MathSciNet review: 1433122