Erratic solutions of simple delay equations
HTML articles powered by AMS MathViewer
- by Bernhard Lani-Wayda
- Trans. Amer. Math. Soc. 351 (1999), 901-945
- DOI: https://doi.org/10.1090/S0002-9947-99-02351-X
- PDF | Request permission
Abstract:
We give an example of a smooth function $g:\mathbb {R} \to \mathbb {R}$ with only one extremum, with $\operatorname {sign} g(x) = - \operatorname {sign} g(-x)$ for $x \neq 0$, and the following properties: The delay equation $\dot x (t) = g(x(t-1))$ has an unstable periodic solution and a solution with phase curve transversally homoclinic to the orbit of the periodic solution. The complicated motion arising from this structure, and its robustness under perturbation of $g$, are described in terms of a Poincaré map. The example is minimal in the sense that the condition $g’ < 0$ (under which there would be no extremum) excludes complex solution behavior. Based on numerical observations, we discuss the role of the erratic solutions in the set of all solutions.References
- Uwe an der Heiden and Hans-Otto Walther, Existence of chaos in control systems with delayed feedback, J. Differential Equations 47 (1983), no. 2, 273–295. MR 688106, DOI 10.1016/0022-0396(83)90037-2
- Michael Benedicks and Lennart Carleson, On iterations of $1-ax^2$ on $(-1,1)$, Ann. of Math. (2) 122 (1985), no. 1, 1–25. MR 799250, DOI 10.2307/1971367
- Michael Benedicks and Lennart Carleson, The dynamics of the Hénon map, Ann. of Math. (2) 133 (1991), no. 1, 73–169. MR 1087346, DOI 10.2307/2944326
- Peter Dormayer and Bernhard Lani-Wayda, Floquet multipliers and secondary bifurcations in functional-differential equations: numerical and analytical results, Z. Angew. Math. Phys. 46 (1995), no. 6, 823–858. MR 1365064, DOI 10.1007/BF00917872
- R. D. Driver, Ordinary and delay differential equations, Applied Mathematical Sciences, Vol. 20, Springer-Verlag, New York-Heidelberg, 1977. MR 0477368
- Odo Diekmann, Stephan A. van Gils, Sjoerd M. Verduyn Lunel, and Hans-Otto Walther, Delay equations, Applied Mathematical Sciences, vol. 110, Springer-Verlag, New York, 1995. Functional, complex, and nonlinear analysis. MR 1345150, DOI 10.1007/978-1-4612-4206-2
- T. Gedeon, Cyclic feedback systems, Mem. AMS (to appear).
- Peter Grassberger and Itamar Procaccia, Measuring the strangeness of strange attractors, Phys. D 9 (1983), no. 1-2, 189–208. MR 732572, DOI 10.1016/0167-2789(83)90298-1
- Jack K. Hale, Functional differential equations, Applied Mathematical Sciences, Vol. 3, Springer-Verlag New York, New York-Heidelberg, 1971. MR 0466837
- Jack K. Hale and Xiao-Biao Lin, Symbolic dynamics and nonlinear semiflows, Ann. Mat. Pura Appl. (4) 144 (1986), 229–259. MR 870879, DOI 10.1007/BF01760821
- Jack K. Hale and Xiao-Biao Lin, Examples of transverse homoclinic orbits in delay equations, Nonlinear Anal. 10 (1986), no. 7, 693–709. MR 849959, DOI 10.1016/0362-546X(86)90129-X
- Jack K. Hale and Natalia Sternberg, Onset of chaos in differential delay equations, J. Comput. Phys. 77 (1988), no. 1, 221–239. MR 954309, DOI 10.1016/0021-9991(88)90164-7
- Jack K. Hale and Sjoerd M. Verduyn Lunel, Introduction to functional-differential equations, Applied Mathematical Sciences, vol. 99, Springer-Verlag, New York, 1993. MR 1243878, DOI 10.1007/978-1-4612-4342-7
- Anatoli Ivanov, Bernhard Lani-Wayda, and Hans-Otto Walther, Unstable hyperbolic periodic solutions of differential delay equations, Recent trends in differential equations, World Sci. Ser. Appl. Anal., vol. 1, World Sci. Publ., River Edge, NJ, 1992, pp. 301–316. MR 1180119
- U. Kirchgraber and D. Stoffer, Chaotic behaviour in simple dynamical systems, SIAM Rev. 32 (1990), no. 3, 424–452. MR 1069896, DOI 10.1137/1032078
- Arnaud Denjoy, Sur certaines séries de Taylor admettant leur cercle de convergence comme coupure essentielle, C. R. Acad. Sci. Paris 209 (1939), 373–374 (French). MR 50
- Bernhard Lani-Wayda, Persistence of Poincaré mappings in functional-differential equations (with application to structural stability of complicated behavior), J. Dynam. Differential Equations 7 (1995), no. 1, 1–71. MR 1321706, DOI 10.1007/BF02218814
- B. Lani–Wayda, Hyperbolic Sets, Shadowing and Persistence for Noninvertible Mappings in Banach spaces, Research Notes in Mathematics No. 334, Longman Group Ltd., Harlow, Essex, 1995.
- Bernhard Lani-Wayda and Hans-Otto Walther, Chaotic motion generated by delayed negative feedback. I. A transversality criterion, Differential Integral Equations 8 (1995), no. 6, 1407–1452. MR 1329849
- Bernhard Lani-Wayda and Hans-Otto Walther, Chaotic motion generated by delayed negative feedback. II. Construction of nonlinearities, Math. Nachr. 180 (1996), 141–211. MR 1397673, DOI 10.1002/mana.3211800109
- A. Lasota, Ergodic problems in biology, Dynamical systems, Vol. II—Warsaw, Astérisque, No. 50, Soc. Math. France, Paris, 1977, pp. 239–250. MR 0490015
- V.A. Lazutkin, Positive Entropy for the Standard Map I, Preprint 94-47, Université de Paris-Sud, Mathématiques, Bâtiment 425, 91405 Orsay, France, 1994.
- A. Lasota and M. Wazewska–Czyzewska, Matematyczne problemy dynamiki ukladu krwinek czerwonych, Mat. Stosowana 6 (1976), 23–40.
- T. Y. Li and James A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), no. 10, 985–992. MR 385028, DOI 10.2307/2318254
- M.C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science 197 (1977), 287–295.
- M. Morse, A one-to-one representation of geodesics on a surface of negative curvature, Am. J. Math. 43 (1921), 33–51.
- M. Morse and G. Hedlund, Symbolic Dynamics , Am. J. Math. 60 (1938), 815–866.
- John Mallet-Paret, Morse decompositions for delay-differential equations, J. Differential Equations 72 (1988), no. 2, 270–315. MR 932368, DOI 10.1016/0022-0396(88)90157-X
- John Mallet-Paret and George R. Sell, Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions, J. Differential Equations 125 (1996), no. 2, 385–440. MR 1378762, DOI 10.1006/jdeq.1996.0036
- John Mallet-Paret and Hal L. Smith, The Poincaré-Bendixson theorem for monotone cyclic feedback systems, J. Dynam. Differential Equations 2 (1990), no. 4, 367–421. MR 1073471, DOI 10.1007/BF01054041
- J. Mallet-Paret and H.-O. Walther, Rapid oscillations are rare in scalar systems governed by monotone negative feedback with a time lag, Preprint, Math. Inst. Univ. Giessen, 1994.
- Kenneth J. Palmer, Exponential dichotomies, the shadowing lemma and transversal homoclinic points, Dynamics reported, Vol. 1, Dynam. Report. Ser. Dynam. Systems Appl., vol. 1, Wiley, Chichester, 1988, pp. 265–306. MR 945967
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- Heinrich Steinlein and Hans-Otto Walther, Hyperbolic sets, transversal homoclinic trajectories, and symbolic dynamics for $C^1$-maps in Banach spaces, J. Dynam. Differential Equations 2 (1990), no. 3, 325–365. MR 1066620, DOI 10.1007/BF01048949
- Hans-Otto Walther, Homoclinic solution and chaos in $\dot x(t)=f(x(t-1))$, Nonlinear Anal. 5 (1981), no. 7, 775–788. MR 623379, DOI 10.1016/0362-546X(81)90052-3
- Hans-Otto Walther, Hyperbolic periodic solutions, heteroclinic connections and transversal homoclinic points in autonomous differential delay equations, Mem. Amer. Math. Soc. 79 (1989), no. 402, iv+104. MR 979430, DOI 10.1090/memo/0402
- Hans-Otto Walther, The $2$-dimensional attractor of $x’(t)=-\mu x(t)+f(x(t-1))$, Mem. Amer. Math. Soc. 113 (1995), no. 544, vi+76. MR 1230775, DOI 10.1090/memo/0544
Bibliographic Information
- Bernhard Lani-Wayda
- Affiliation: Mathematisches Institut der Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
- Email: Bernhard.Lani-Wayda@math.uni-giessen.de
- Received by editor(s): September 4, 1996
- Additional Notes: Supported by the Deutsche Forschungsgemeinschaft within the Schwerpunkt Analysis, Ergodentheorie und Effiziente Simulation Dynamischer Systeme.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 901-945
- MSC (1991): Primary 34K15, 58F13, 70K50
- DOI: https://doi.org/10.1090/S0002-9947-99-02351-X
- MathSciNet review: 1615995