On locally linearly dependent operators
and derivations
Authors:
Matej Bresar and Peter Semrl
Journal:
Trans. Amer. Math. Soc. 351 (1999), 1257-1275
MSC (1991):
Primary 15A04, 16W25, 47B47; Secondary 46H05, 47B48
DOI:
https://doi.org/10.1090/S0002-9947-99-02370-3
MathSciNet review:
1621729
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The first section of the paper deals with linear operators ,
, where
and
are vector spaces over an infinite field, such that for every
, the vectors
are linearly dependent modulo a fixed finite dimensional subspace of
. In the second section, outer derivations of dense algebras of linear operators are discussed. The results of the first two sections of the paper are applied in the last section, where commuting pairs of continuous derivations
of a Banach algebra
such that
is quasi-nilpotent for every
are characterized.
- 1. S. A. Amitsur, Generalized polynomial identities and pivotal monomials, Trans. Amer. Math. Soc. 114 (1965), 210–226. MR 172902, https://doi.org/10.1090/S0002-9947-1965-0172902-9
- 2. Bernard Aupetit, A primer on spectral theory, Universitext, Springer-Verlag, New York, 1991. MR 1083349
- 3. Jeffrey Bergen, Derivations in prime rings, Canad. Math. Bull. 26 (1983), no. 3, 267–270. MR 703394, https://doi.org/10.4153/CMB-1983-042-2
- 4. Matej Brešar, Derivations mapping into the socle. II, Proc. Amer. Math. Soc. 126 (1998), no. 1, 181–187. MR 1416078, https://doi.org/10.1090/S0002-9939-98-03993-8
- 5. Matej Brešar and Peter Šemrl, Derivations mapping into the socle, Math. Proc. Cambridge Philos. Soc. 120 (1996), no. 2, 339–346. MR 1384473, https://doi.org/10.1017/S0305004100074892
- 6. P. Fillmore, C. Laurie, and H. Radjavi, On matrix spaces with zero determinant, Linear and Multilinear Algebra 18 (1985), no. 3, 255–266. MR 828407, https://doi.org/10.1080/03081088508817691
- 7. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., Vol. 37, Amer. Math. Soc., Providence, R. I., 1956. MR 18:373d
- 8. I. Kaplansky, Infinite Abelian groups, Ann Arbor, 1954. MR 16:444g
- 9. Vladimír Müller, Kaplansky’s theorem and Banach PI-algebras, Pacific J. Math. 141 (1990), no. 2, 355–361. MR 1035448
- 10. Edward C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100. MR 95863, https://doi.org/10.1090/S0002-9939-1957-0095863-0
- 11. C. J. K. Batty, Perturbations of ground states of type 𝐼 𝐶*-algebras, Proc. Amer. Math. Soc. 78 (1980), no. 4, 539–544. MR 556628, https://doi.org/10.1090/S0002-9939-1980-0556628-9
- 12. Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77. MR 0367682
- 13. A. M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969), 166–170. MR 233207, https://doi.org/10.1090/S0002-9939-1969-0233207-X
- 14. Yu. V. Turovskii, V. S. Shul'man, Conditions for the massiveness of the range of a derivation of a Banach algebra and of associated differential operators, Mat. Zametki 42 (1987), 305-314; English transl., Math. Notes 42 (1987), 669-674. MR 89e:14051
Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 15A04, 16W25, 47B47, 46H05, 47B48
Retrieve articles in all journals with MSC (1991): 15A04, 16W25, 47B47, 46H05, 47B48
Additional Information
Matej Bresar
Affiliation:
Department of Mathematics, University of Maribor PF, Koroška 160 2000 Maribor, Slovenia
Email:
bresar@uni-mb.sl
Peter Semrl
Affiliation:
Department of Mathematics, University of Maribor SF, Smetanova 17 2000 Maribor, Slovenia
Email:
peter.semrl@uni-mb.sl
DOI:
https://doi.org/10.1090/S0002-9947-99-02370-3
Received by editor(s):
February 12, 1997
Additional Notes:
The authors were supported in part by the Ministry of Science of Slovenia.
Article copyright:
© Copyright 1999
American Mathematical Society