
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 351, Number 3, March 1999, Pages 1123–1150
S 0002-9947(99)02405-8

A GENERALIZATION OF SNAITH-TYPE FILTRATION

GREG ARONE

Abstract. In this paper we describe the Goodwillie tower of the stable homo-
topy of a space of maps from a finite-dimensional complex to a highly enough
connected space. One way to view it is as a partial generalization of some well-
known results on stable splittings of mapping spaces in terms of configuration
spaces.

0. Introduction

It has been known for a while (see [1] for a survey article and a list of references)
that given a parallelizable, compact m-dimensional manifold M with a nonempty
boundary, and given a connected, pointed space Z, there is a configuration space
model for the space of unbased maps Map(M, SmZ), which stably splits. More
precisely, there is a weak equivalence:

Ω∞Σ∞ (Map(M, SmZ)) '
∏
n≥1

Ω∞Σ∞ ((C(M, ∂M ; n) ∧Σn Z∧n)) ,(0.1)

where C(M, ∂M ; n) stands for the space of n-tuples of distinct points in M , where
all n-tuples whose intersection with ∂M is not empty have been identified to a
point. There is an analogous splitting for the space of based maps. A closely related
result is the stable splitting of spaces of the form ΩmΣmX . This later splitting is
sometimes refered to as the Snaith splitting (at least in the case m = ∞), and we
refer to (0.1) as Snaith-type splitting.

It is, therefore, natural to ask if for a based space K, that is not a man-
ifold, but, say, a finite CW-complex, anything can be said about the functor
X 7→ QMap∗(K, X) (where Map∗(K, X) stands for the space of based maps from
K to X). One does not expect this functor to split, in general, but it is still rea-
sonable to try to approximate it by more elementary functors in a way that would
give the splitting above in the case when K = M and X = SmZ. It turns out
that this question (in fact a generalization of it) can be answered positively within
the framework of the theory referred to as calculus of functors, which had been
developed by T. Goodwillie in [4], [5], [6]. Since [6] has not been published yet, we
present a brief outline of the theory of “Taylor towers” in the appendix. In what
follows we will freely use notation from there.

Consider again the identity (0.1). Observe that the factors

Q (C(M, ∂M ; n) ∧Σn Z∧n)
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are homogeneous functors (of Z). Therefore, the functors

PnMap(M, SmZ) =
i=n∏
i=0

Q
(
C(M, ∂M ; i) ∧Σi Z∧i

)
are excisive of degree n. Moreover, it is, in fact, true that the (weak) map

QMap(M, SmZ)→ PnMap(M, SmZ)

is (n + 1)k-connected if the space Z is k-connected. Therefore, by universality,
the right hand side of (0.1) is nothing but the Taylor tower of the functor Z 7→
QMap(M, SmZ), where Z ∈ T∗. One can think of it as the “Maclaurin tower” of
QMap(M, SmZ). Hence the generalization that we seek in this paper is the one of
identifying the Taylor tower of the functor QMap∗(K, Y ), where K is a finite CW-
complex and Y ∈ TX . More concretely, we want to answer the following question:
given a space Y containing X as a retract, how can we describe QMap∗(K, Y ) as a
sequence of extensions of QMap∗(K, X) by homogeneous functors?

Let us discuss the case X = ∗ (Maclaurin tower) first. We use implicitly the
fact that the differentials of a functor can be recovered from the differentials of its
composition with (m-fold) suspension. Indeed, there are equivalences (the second
of which follows essentially from duality on manifolds, although in our proofs we
do not refer to duality directly)

Dn(QMap(M, SmZ)) ' Q(C(M, ∂M ; n) ∧ Z∧n)

' Ω∞(Map∗(M
[n], Σ∞((SmZ)∧n))hΣn);

here M [n] = M×n/∆nM , where ∆nM is the “fat diagonal”, i.e. the space of n-
tuples of points in M such that at least two points coincide. The right hand side
makes sense even if M is not a manifold, and it suggests that (over a point)

Dn(QMap∗(K, Y )) ' Ω∞(Map∗(K
(n), Σ∞Y ∧n)hΣn)

(here K(n) = K∧n/∆nK), which is, indeed, the case. Furthermore, since the action
of Σn on K(n) is free off the basepoint, and K(n) is a finite CW-complex, it follows,
by a suitable version of the Adams isomorphism, that

Dn(QMap∗(K, Y )) ' Ω∞(Map∗(K
(n), Σ∞Y ∧n)Σn).

The Taylor polynomials of a functor (as opposed to its homogeneous layers) are
not easily retrievable from the Taylor polynomial of its composition with suspension.
In particular, the fact that the Taylor tower of the functor Y 7→ QMap(M, SmY )
splits does not imply that the Taylor tower of Y 7→ QMap(M, Y ) splits (it doesn’t).
We write explicit formulas for the polynomial approximations of our functor in our
main theorem (theorem 2) and prove that they are correct by establishing that they
have the necessary universal properties. For example the quadratic approximation
(still only over a point) is given by the following formula:

P2Q(Map∗(K, Y )) 'Map∗(K
∧2, Q(Y ∧2))Σ2

with the approximation map being the composition of the obvious maps

QMap∗(K, Y )→ QMap∗(K
∧2, Y ∧2)Σ2 → Map∗(K

∧2, Q(Y ∧2))Σ2

However, P3Q(Map∗(K, Y )) 6= Map∗(K
∧3, Q(Y ∧3))Σ3 .

To pass from the Maclaurin tower to the general Taylor tower we observe that,
given M as in (0.1) and given two topological spaces X and Z, the space of maps
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Map(M, X ∨x SmZ) can be approximated by means of certain “fiberwise configu-
ration spaces” models, which stably splits. Thus the space QMap(M, X ∨x SmZ)
splits as follows:

QMap(M, X ∨x SmZ) '
∏
n≥0

Q
(
C(M, ∂M ; n) ∧x Map(M, X)+ ∧Σn Z∧n

)
,

where
C(M, ∂M ; n) ∧x Map(M, X)+

= {(m1 . . .mn) ∧ f ∈ C(M, ∂M ; n) ∧Map(M, X)+ | ∀1 ≤ i ≤ n f(mi) = x}.
To “dualize” this formula we define certain functors, which we call fiberwise mapping
spaces, and we show how to write the general Taylor tower in terms of these functors.
Thus, for example,

Dn(QMap∗(K, Y )) 'Map∗(K(n), Q((Y/X)∧n ∧Map∗(K, X)+))Σn ,(0.2)

where the right hand side denotes the space of maps satisfying a certain compati-
bility condition.

The paper is organized somewhat differently from the outline above: in section
1, we define fiberwise mapping spaces. These spaces are defined as spaces which
depend functorially on K, X and Y . However, it is not clear from the definitions
that these spaces are homotopy functors (of Y or K), let alone excisive functors (of
Y ).

In section 2, we prove a basic lemma about fiberwise mapping spaces, which
in subsequent sections enables us to prove that fiberwise mapping spaces possess
certain good properties.

In section 3, we use the lemma of section 2 to prove that certain fiberwise map-
ping spaces are, indeed, excisive homotopy functors of Y .

In section 4, we use fiberwise mapping spaces to describe the Taylor tower of the
functor QMap∗(K, Y ). In subsection 4.1 we state the main theorem. In particular,
we describe the Taylor polynomials of QMap∗(K, Y ). This result appears to be new
even in the case X = ∗, when fiberwise mapping spaces become ordinary mapping
spaces. In subsection 4.2 we prove the main theorem.

The reader is strongly encouraged to proceed from the introduction directly to
section 4.1, and refer to the earlier sections as need arises.

Remark 1. It is easy to see that, given any (−1)-connected spectrum E, our for-
mulas can be generalized to describe the Taylor tower of the funcor

Y 7→ Ω∞ (E ∧Map∗(K, Y )) .

Basically, one just replaces Q with Ω∞E everywhere. Some care might be needed
with the fiberwise case, but presumably it is not too hard to figure out. In par-
ticular, one gets a spectral sequence for the homology of the space of maps from a
finite complex to a highly enough connected space. There is no doubt that many
special cases of this spectral sequence are known. For instance, it was known to
Goodwillie a long time ago that in the case K = S1, one gets the usual Eilenberg-
Moore spectral sequence for the homology of ΩX . The spectral sequence probably
has not been written in this generality before. However, the really new result of
this paper is the functorial, explicit description of the extentions on the space level.

Acknowledgement: This is a much revised version of my Ph.D. thesis (Brown,
1993) written under the supervision of T. Goodwillie.



1126 GREG ARONE

1. Fiberwise mapping spaces

Let X be a fixed space with a basepoint. Throughout this paper, TX will denote
the category of all spaces containing X as a retract. Thus an object of TX is a
triple (Y, α, ρ) where Y and X are based spaces, α : Y → X is a map, ρ : X → Y

is a cofibration and the composite X
ρ→ Y

α→ X is the identity. A morphism
(Y, α, ρ) → (Y ′, α′, ρ′) is a map Y → Y ′ which commutes with α, α′, ρ and ρ′ in
the obvious sense. We consider the functor QMap∗(K, Y ), where K is a finite CW
complex with a basepoint, Y ∈ TX and Map∗(−,−) stands for the space of based
maps. Q(−) stands for Ω∞Σ∞(−).

For an integer n ≥ 1, let Kn
1 be a Σn equivariant subquotient of the space

K×n. This means that there exist Σn equivariant subcomplexes Ka ⊆ Kb of K×n

such that Kn
1
∼= Kb/Ka. We will denote by Pi the projection of K×n on its i-th

coordinate. Obviously, if Kn
1 is not a subcomplex of K×n then Pi does not induce

a map on Kn
1 ; however, it does induce a map on Kn

1 \ {∗}. We will denote this
restricted map by the same symbol.

Let W be a based space endowed with a map

α : W \ {∗} → X.

In keeping with our conventions for maps induced by projections of cartesian prod-
ucts on summands, we define the maps

PWi : W∧n ∧Map∗(K, X)+ \ {∗} →W

(projection on ith coordinate in Wn) and

PF : W∧n ∧Map∗(K, X)+ \ {∗} → Map∗(K, X)

(projection on Map∗(K, X)).
We are now ready to define fiberwise mapping spaces.

Definition 1.

Map∗(Kn
1 , W∧n ∧Map∗(K, X)+)

= {f ∈ Map∗(K
n
1 , W∧n ∧Map∗(K, X)+) | ∀ kn

1 ∈ Kn
1 \ f−1(∗)

PF (f(kn
1 ))(Pi(kn

1 )) = α(PWi(f(kn
1 ))) ∀ 1 ≤ i ≤ n}.

We say that the space Map∗(Kn
1 , W∧n ∧Map∗(K, X)+) is a fiberwise mapping

space.

Likewise, we define the stable fiberwise mapping space

Map∗(Kn
1 , Q(W∧n ∧Map∗(K, X)+))

as follows:

Definition 2.

Map∗(Kn
1 , Q(W∧n ∧Map∗(K, X)+))

= limN{f ∈Map∗(SN ∧Kn
1 , SN ∧ (W∧n ∧Map∗(K, X)+)) |

∀ sN ∧ kn
1 ∈ SN ∧Kn

1 \ f−1(∗)
PF (f(sn ∧ kn

1 ))(Pi(kn
1 )) = α(PWi(f(sn ∧ kn

1 ))) ∀ 1 ≤ i ≤ n}.
We will say that a function f satisfies the bar condition if it is an element of

some appropriate fiberwise mapping space.
Clearly, fiberwise mapping spaces are Σn equivariant subspaces of the corre-

sponding mapping spaces, where the action of Σn is induced by the obvious action
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on Kn
1 and W∧n and the trivial action on Map∗(K, X). In particular, it makes

sense to talk about maps which are equivariant and satisfy the bar condition. We
will denote spaces of such maps by Map∗(Kn

1 , W∧n ∧Map∗(K, X)+)Σn , etc.
Notice that if X ∼= ∗ then fiberwise mapping spaces are homeomorphic to ordi-

nary mapping spaces. For instance, if X ∼= ∗ then

Map∗(Kn
1 , Q(W∧n ∧Map∗(K, X)+))Σn ∼= Map∗ (Kn

1 , Q(W∧n))Σn .

It is also clearly possible to define fiberwise mapping spaces such as

Map∗(Kn
1 , Vn ∧Map∗(K, X)+)Σn

for any based space Vn endowed with an action of Σn and a Σn equivariant map

α̃ : Vn \ ∗ → Xn.

2. A fibration lemma

At this point, it is not clear that fiberwise mapping spaces have good homotopy
properties. We want to prove that certain fiberwise mapping spaces make excisive
functors of Y . However it is not even obvious from the definition that they are
homotopy functors of Y , K and Kn

1 . The following lemma will be the key tool
for proving such statements, as it will enable us to make inductive proofs (on the
dimension of Kn

1 , on the number of cells in Kn
1 , etc.). It will be referred to as the

fibration lemma.
Let Y ∈ TX . By definition, there is a cofibration X → Y . Let Y/X denote the

quotient. Let n ≥ 1. Let K be a finite CW-complex. Let Kn
1 be a Σn equivariant

subquotient complex of K×n. Let Kn
2 ⊆ Kn

1 be a Σn equivariant subcomplex of
Kn

1 . Note that the map α : Y → X induces a map Y/X \ {∗} → X .

The fibration lemma. Restriction maps such as

Map∗(Kn
1 , (Y/X)∧n ∧Map∗(K, X)+)Σn

↓
Map∗(Kn

2 , (Y/X)∧n ∧Map∗(K, X)+)Σn

and

Map∗(Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

↓
Map∗(Kn

2 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

are Serre fibrations.

Proof. We will prove that the second map is a fibration, the proof of all other cases
being identical. First, we prove the statement for the case when Kn

1 is a subcomplex
of K×n. Following our conventions, we will denote by Pi the projection of K×n on
its i-th coordinate. Again, by a slight abuse of notation, we also denote by Pi its
restrictions to Kn

1 and Kn
2 . Our goal is to show that for every commutative square

diagram of the form

Im → Map∗(Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

↓ ↓
Im × I → Map∗(Kn

2 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn
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there exists a map Im × I → Map∗(Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn , which

commutes with all the maps in the square. This is equivalent to showing that for
every diagram of based map of the form

(Im × I)+ ∧Kn
1 Q((Y/X)∧n ∧Map∗(K, X)+)

↑ ↗T

Im
+ ∧ (I+ ∧Kn

2 ∪ {0}+ ∧Kn
1 )

where the map T is equivariant and satisfies the bar condition, there exists a based
map U : (Im × I)+ ∧ Kn

1 → Q((Y/X)∧n ∧ Map∗(K, X)+) which is equivariant,
satisfies the bar condition, and completes the diagram to a commutative triangle.
Since (Kn

1 , Kn
2 ) is a Σn-NDR pair, it follows that (I+ ∧Kn

1 , I+ ∧Kn
2 ∪ {0}+ ∧Kn

1 )
is a Σn-DR pair. Hence there exists a Σn equivariant retraction

G : I+ ∧Kn
1 → I+ ∧Kn

2 ∪ {0}+ ∧Kn
1

Therefore, we have the following diagram:

Im
+ ∧ I+ ∧Kn

1 Q((Y/X)∧n ∧Map∗(K, X)+)
↑↓IdIm

+
∧G ↗T

Im
+ ∧ (I+ ∧Kn

2 ∪ {0}+ ∧Kn
1 )

One could consider the map T ◦ (IdIm × G) as the first candidate for being
the map U above. It is, indeed, Σn equivariant, but it does not satisfy the bar
condition. To rectify that, we need the following proposition.

Proposition 1. There exists a based map H : I+ ∧Kn
1 → Map∗(K, K) with the

following properties:
(1) H |I+∧Kn

2 ∪{0}+∧Kn
1
≡ Id ∈ Map∗(K, K).

(2) H(kn
1 , t)(Pi(kn

1 )) = Pi(PKn
1
(G(kn

1 , t))) ∀ 1 ≤ i ≤ n, ∀kn
1 ∈ Kn

1 , ∀t ∈ I
(PKn

1
stands for the obvious projection of I+ ∧Kn

1 on Kn
1 ).

(3) H is Σn equivariant.
Note that we take the basepoint of Map∗(K, K) to be the identity map.

Proof. Our assertion is equivalent to the one stating that there exists a based map

H∗ : I+ ∧K ∧Kn
1 → K

which satisfies the following conditions:

(1′) H∗ |I+∧K∧Kn
2 ∪{0}+∧K∧Kn

1
= PK (projection on K),

(2′) H∗ |I+∧∆iK= Pi(PKn
1
(G(PI+∧Kn

1
))) ∀ 1 ≤ i ≤ n, ∀kn

1 ∈ Kn
1 , ∀t ∈ I

(∆iK = {(k ∧ kn
1 ) ∈ K ∧Kn

1 | if k ∧ kn
1 6= {basepoint} then Pi(kn

1 ) = k}),
(3′) H∗ is Σn equivariant.

The first thing we need to check is that these conditions are compatible. Condi-
tion (1′) is compatible with any of the conditions in (2′) because G is a retraction.
Condition (1′) is compatible with (3′) because projection on K is Σn equivariant.
Any of the conditions in (2′) is compatible with (3′) because G is Σn equivariant.
Finally, it is obvious that all the conditions in (2′) are compatible with each other.

Thus, H∗ is well defined on the subspace

I+ ∧
(

K ∧Kn
2 ∪

(
i=n⋃
i=1

∆iK

))
∪ {0}+ ∧K ∧Kn

1
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of I+ ∧K ∧Kn
1 . The pair(

K ∧Kn
1 ,

(
K ∧Kn

2 ∪
(

i=n⋃
i=1

∆iK

)))
is a Σn NDR pair, and so the pair(

I+ ∧K ×Kn
1 , I+ ∧

(
K ∧Kn

2 ∪
(

i=n⋃
i=1

∆iK

))
∪ {0}+ ∧K ∧Kn

1

)
is a Σn DR pair. Therefore H∗ can be extended to I+ ∧K ∧Kn

1 .

Now it is easy to see that the map H induces a (Σn equivariant) map

H̃ : (Im × I)+ ∧Kn
1 → Map∗(Map∗(K, X), Map∗(K, X))

defined as the composition

(Im × I)+ ∧Kn
1 → I+ ∧Kn

1
H→ Map∗(K, K)→ Map∗(Map∗(K, X), Map∗(K, X)).

The map H̃ in turn induces a (Σn equivariant) map

QĤ : (Im × I)+ ∧Kn
1

→ Map∗(Q((Y/X)∧n ∧Map∗(K, X)+), Q((Y/X)∧n ∧Map∗(K, X)+)),

which in turn induces a map U as follows:

U : (Im × I)+ ∧Kn
1 → Q((Y/X)∧n ∧Map∗(K, X)+),

(v, t, kn
1 ) 7→ QĤ(v, t, kn

1 )
(
T ◦ (IdIm

+
∧G)(v, t, kn

1 )
)

.

In order to show that the map U has all the desired properties we need to check
that:

1′′) U |(Im×I)+∧Kn
2 ∪(Im×{0})+∧Kn

1
= T .

2′′) U satisfies the bar condition.
3′′) U is Σn equivariant.
(1′′) follows from condition (1) in Proposition 1 and from the fact that G is a

retraction. (2′′) follows from condition (2) in Proposition 1 and (3′′) follows from
the fact that QĤ, T and G are equivariant maps.

We have proved the lemma for the case when Kn
1 is a subcomplex of K×n. Now

assume that Kn
1
∼= K̃n

1 /K0 and Kn
2
∼= K̃n

2 /K0, where K0 ⊆ K̃n
2 ⊆ K̃n

1 are Σn

equivariant subcomplexes of K×n, and consider the diagram

Map∗(K
n
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn→Map∗(K̃

n
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

↓ ↓
Map∗(K

n
2 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn→Map∗(K̃

n
2 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

It is very easy to check that this diagram is a strict pullback, and we have proved that
the right map is a fibration. Therefore, the left map is a fibration.

Corollary 1. The homotopy fiber of the restriction map

Map∗(Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

↓
Map∗(Kn

2 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn
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is homotopy equivalent to

Map∗(Kn
1 /Kn

2 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn .

3. Properties of fiberwise mapping spaces

3.1. Fiberwise mapping spaces are homotopy functors of Kn
1 . As a first

step towards analyzing fiberwise mapping spaces, we have to prove that they are
homotopy functors of Kn

1 in some suitable sense. The following lemma will suffice
for our needs.

Lemma 1. Let Kn
1 be a Σn equivariant subquotient of K×n. Let Kn

2 be a Σn-
equivariant deformation retract of Kn

1 . Then the restriction map

Map∗(Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

↓ r

Map∗(Kn
2 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

is a homotopy equivalence.

Proof. The proof is very similar to the proof of the fibration lemma. First we
assume that Kn

1 is a subcomplex of K×n. We will construct a map

s : Map∗(Kn
2 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn →

→ Map∗(Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

and prove that it is a two-sided homotopy inverse of r.
By our assumption on Kn

2 , there exists a homotopy

G : I+ ∧Kn
1 → Kn

1

such that
1) G |{0}+∧Kn

1 ∪I+∧Kn
2
= PKn

1
,

2) G |{1}+∧Kn
2

(Kn
1 ) ⊆ Kn

2 ,
3) G is Σn-equivariant.

Proposition 2. There exists a homotopy

H : I+ ∧Kn
1 → Map∗(K, K)

such that
1′) H |{0}+∧Kn

1 ∪I+∧Kn
2
≡ IdK ,

2′) H(t, kn
1 )(Pi(kn

1 )) = Pi(G(t, kn
1 )), i = 1, . . . , n,

3′) H is Σn-equivariant.

Proof. The proof is virtually identical to the proof of proposition 1.

Now define a homotopy

s̃ : I+ ∧Map∗ (Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

→ Map∗ (Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

as follows: first, we observe that a map as above is exactly the same as a map

Map∗ (Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

→ Map∗ (I+ ∧Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn .
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Such a map is induced by G. We compose this map with a map

Map∗ (I+ ∧Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

→ Map∗ (I+ ∧Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

induced by H in the obvious way. Thus s̃ is induced by the composition of these
two maps. Let s be the map obtained by restricting s̃ to

{1}+ ∧Map∗ (Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn .

Thus s is a map

Map∗ (Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

→ Map∗ (Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn .

Because of condition (2) in the definition of G, s may in fact be considered as a
map

Map∗ (Kn
2 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

→ Map∗ (Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn .

Moreover, it follows from property (2) in the definition of H that s preserves the
bar condition, i.e

s :
(
Map∗(Kn

2 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

)
⊆
(
Map∗(Kn

1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

)
.

Therefore we may think of s as a map

s :Map∗(Kn
2 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

→ Map∗(Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn .

It remains to check that s is a two-sided homotopy inverse of r. Obviously, rs = Id,
since G |I+∧K2= PK1 and H |I+∧K2≡ IdK . To see that sr ' Id, observe that s̃
induces the required homotopy. We have proved the lemma in the case when K1

is a subcomplex of K×n. The general case is concluded in the same way as in the
last step of the proof of the fibration lemma.

3.2. Fiberwise mapping spaces make excisive homotopy functors of Y .
Now we have set the ground to prove that fiberwise mapping spaces have some
good properties.

Let n ≥ 1. Let Y ∈ TX . Let Kn
1 be as usual. Consider the functor

Map∗(Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

Theorem 1. This functor is
1) a homotopy functor of Y → X. That is, if a map Y → Y ′ is a weak

equivalence in TX , then the induced map

Map∗(Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

→ Map∗(Kn
1 , Q((Y ′/X)∧n ∧Map∗(K, X)+))Σn

is a weak equivalence.
2) excisive of degree n. Moreover, if the action of Σn on Kn

1 is free off the
basepoint, then the functor is homogeneous of degree n.
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3) a reduced functor of TX .

Proof of the theorem. First, let us discuss statement (3). It says that if Y ' X
then

Map∗(Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn ' ∗.

Assuming that statement (1) is true, it is enough to prove (3) for the case Y ∼= X .
But in this case Y/X ∼= ∗ and therefore the space

Map∗(Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

is a subspace of the space of maps of Kn
1 into a one point space, which is also a one

point space. Therefore in this case Map∗(Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn ∼= ∗.

The proof of statements (1) and (2) is by induction on d, the dimension of Kn
1 .

We start with the case d = 0, i.e. Kn
1 is a finite based set with an action of Σn.

Let e be the number of orbits under this action not counting the orbit consisting
of the basepoint. We proceed with an induction on e. So, we first prove the case
e = 1. In this case Kn

1 is a Σn orbit of one point in K×n plus the basepoint.
Choose a representative point (k1, . . . , kn) in Kn

1 . Let K̃n
1 be the set consisting

of this representative and the basepoint. Let S be the set of distinct elements in
(k1, . . . , kn). Let s be the cardinality of S, let K̃s

1 be the the set consisting of the
s-tuple (k1, . . . , ks) and the basepoint. Then, recalling the definitions, it is clear
that

Map∗(Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

∼= Map∗(K̃s
1 , Q((Y/X)∧s ∧Map∗(K, X)+))

∼= Q
(
Map∗(K̃s

1 , (Y/X)∧s ∧Map∗(K, X)+)
)

,

and we will denote the space

Map∗(K̃s
1 , (Y/X)∧s ∧Map∗(K, X)+)

simply by (Y/X)∧s ∧Map∗(K, X)+. Explicitly, this is the following space:

((Y/X)∧s ∧Map∗(K, X)+)

= {(y1 ∧ . . . ∧ ys, f) ∈ (Y/X)∧s ∧Map∗(K, X)+ |
either (y1 ∧ . . . ∧ ys) is the basepoint or

∀1 ≤ i ≤ s f(ki) = α(yi)}.
We define (Y/X)∧s ×Map∗(K, X) similarly to (Y/X)∧s ∧Map∗(K, X)+, and it is
straightforward to check that

(Y/X)∧s ∧Map∗(K, X)+ ∼= (Y/X)∧s ×Map∗(K, X)
∗ ×Map∗(K, X)

.

Likewise, it is possible to define the space

(Y/X)∧s ×Map∗(K0, X)

for any K0 such that S ⊆ K0 ⊆ K. In particular, it is defined for S = K0. Now
consider the commutative square

(Y/X)∧s ×Map∗(K, X) → Map∗(K, X)
↓ ↓

(Y/X)∧s ×Map∗(S, X) → Map∗(S, X)
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Proposition 3. This is a strict pullback square.

Proof. Easy.

We conclude that since the right vertical map map is a fibration, the left vertical
map is a fibration too.

Recall that our goal was to prove that the functor Q
(
(Y/X)∧s ∧Map∗(K, X)+

)
is an excisive homotopy functor (and in case the action of Σn on Kn

1 is free off the
basepoint, is also homogeneous of degree n). Since Q takes co-Cartesian cubes to
Cartesian cubes, it is enough to prove that the functor

(
(Y/X)∧s ∧Map∗(K, X)+

)
is a homology functor, which satisfies the “homology limit axiom”, which takes
strongly co-Cartesian n+1-cubes to co-Cartesian n+1-cubes (and which, in case the
action of Σn on Kn

1 is free off the basepoint, also takes l-connected spaces over X to
nl-connected spaces). We will show that a) the functor

(
(Y/X)∧s ×Map∗(S, X)

)
has all the required properties, and b) that this implies the same for(

(Y/X)∧s ×Map∗(K, X)
)

.

Indeed, to see (a) notice that there is a cofibration sequence

Map∗(S, X)→
(
(Y/X)∧s ×Map∗(S, X)

)
→ (Y/X)∧s.

To see (b) recall that there is a fibration sequence

Map∗(K/S, X)→
(
(Y/X)∧s ×Map∗(K, X)

)
→
(
(Y/X)∧s ×Map∗(S, X)

)
in which the fiber is constant (as a functor of Y ). The statement of (b) is easily
implied by the following two well known propositions:

Proposition 4. Let

Y0 → Y1 → Y2 → . . .
↓ ↓ ↓

X0 → X1 → X2 → . . .

be a commutative diagram such that each square is homotopy Cartesian. Then the
homotopy fiber of the induced map on the mapping telescopes is the same as of the
maps Yi → Xi.

Proof. [10, Lemma 1.8]

Proposition 5. Let p : E → B be a map of filtered spaces such that FnE =
p−1FnB for n ≥ 0 and, for n ≥ 1, p : FnE → FnB is obtained by passage to
pushouts from a commutative diagram of the form

Fn−1E
gn← Dn

jn→ En

p↓ ↓qn ↓pn

Fn−1B
fn← An

in→ Bn

Suppose that the following conditions hold.
(i) p|F0E is a quasifibration.
(ii) Each map pn : En → Bn is a fibration.
(iii) Each map in : An → Bn is a cofibration.
(iv) Each right square is a pullback.
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(v) gn induces weak equivalences on all fibers.
Then p : e → B is a quasifibration, and so are its restrictions to FnE for all

n ≥ 0.

Proof. [8, Theorem 2.7]

It remains to prove that if the action of Σn on Kn
1 is free off the basepoint, then

the functor

Q
(
(Y/X)∧s ∧Map∗(K, X)+

)
is homogeneous of degree n, for which, since we have shown that this functor is n-
excisive, it is enough to show that it takes l-connected spaces over X to nl-connected
spaces. To prove this it is enough to prove that the map(

(Y/X)∧s ×Map∗(K, X)
)
→ Map∗(K, X)

is nl-connected if (Y/X) is l-connected. If Σn is acting freely (off the basepoint)
on Kn

1 then s = n, and (again) there is a pullback square

(Y/X)∧n ×Map∗(K, X) → Map∗(K, X)
↓ ↓

(Y/X)∧n ×Map∗(S, X) → Map∗(S, X)

We need to prove that a certain connectivity property holds for the top horizontal
map. But the condition clearly holds for the bottom map, and therefore for the top
map.

We have completed the proof of the case e = 1. Now let Kn
1 have e+1 orbits (not

counting the basepoint) and assume that in the case of e orbits the theorem is true.
Let Kn

2 ⊆ Kn
1 be a subspace containing one orbit and the basepoint. Clearly, the

quotient Kn
1 /Kn

2 is the union of e orbits and the basepoint. Consider the sequence

Map∗(Kn
1 /Kn

2 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

↓
Map∗(Kn

1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

↓
Map∗(Kn

2 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

It follows immediately from the fibration lemma and its corollary that this is a
fibration sequence, and by the induction assumption, the theorem is true for the
base and the fiber. It follows that it is true for the total space.

We have completed the case d = 0. Now let Kn
1 be of dimension d + 1, and

assume that the theorem is true if Kn
1 is of dimension d. Let X̃d+1 be the disjoint

union of the d+1-cells in Kn
1 . So, X̃d+1 is a disjoint union of d+1-dimensional balls.

For each of these balls take an open “subball” of some fixed slightly smaller radius.
Let Xd+1 be the disjoint union of these subballs and let Xd+1 be the union of the
corresponding closed balls. Let dK

n
1 = Kn

1 \ Xd+1. Clearly, the d-skeleton of Kn
1

is a Σn-equivariant homotopy retract of dK
n
1 . There is an equivariant homotopy

pushout square

∂Xd+1+ → Xd+1+

↓ ↓
dK

n
1 → Kn

1
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It follows immediately from the fibration lemma that it induces a homotopy pullback
square

Map∗(Kn
1 , Q((Y/X)∧n ∧Map+(K, X)+))Σn

↓
Map∗(dKn

1 , Q((Y/X)∧n ∧Map+(K, X)+))Σn

→ Map∗(Xd+1+ , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

↓
→ Map∗(∂Xd+1+ , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

The theorem holds for the lower left and lower right corners by our induction
assumption. The same is true for the upper right corner by lemma 1 since Xd+1+

is equivariantly equivalent to a finite set. Therefore the theorem is true for the
functor at the upper left corner. This completes the induction and the proof of the
theorem.

4. Description of the Taylor tower

4.1. The main theorem. In this section we will define a sequence of functors
Pn

X QMap∗(K, Y ), which we will eventually prove to be equivalent to the Taylor
polynomials of QMap∗(K, Y ). We need some preliminary definitions.

Definition 3. Let M be the category whose objects are the standard finite sets
(and the empty set):

m = {1, 2, 3 . . . , m}
and whose morphisms are surjective maps of sets

q : m′ → m

Let Mn be the full subcategory of M whose objects are sets of cardinality ≤ n.

By abuse of notation, we may sometimes neglect to underline cardinalities and
use symbols such as m to denote both the number m and the set m.

Definition 4. For a finite set T , X∧T stands for the total cofiber of the cubi-
cal diagram U 7→ Map∗(U+, X), U ⊆ T , in which the maps Map∗(V+, X) →
Map∗(U+, X) are induced by collapsing maps U+ → V+ which send all the ele-
ments in U \ V to the basepoint.

Basically, X∧T is just the smash product of |T | copies of X , made functorial in
T . Note that there is a little twist in case T = ∅. Our convention is that X∅ ∼= ∗
and X∧∅ ∼= ∗+ ∼= S0.

A morphism q : m′ → m in M induces a well-defined map

qK : K∧m → K∧m′
,

k1 ∧ k2 ∧ . . . ∧ km 7→ kq(1) ∧ kq(2) ∧ . . . ∧ kq(m′).

In fact, the corrsepondence m 7→ K∧m defines a contravariant functor M → T∗.

Definition 5. Let Fn, Gn : Mn → Spectra be the two functors defined by

Fn(m) = Σ∞K∧m,

Gn(m) = Σ∞(Y/X)∧m ∧ F (K, X)+.
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Let Nat(Fn, Gn) be the set of natural transformations from Fn to Gn. Obviously,
Nat(Fn, Gn) is a subset of ∏

m∈Ob(Mn)

Map∗ (Fn(m), Gn(m)) ,

which is the same as
n∏

m=0

Map∗ (K∧m, Q((Y/X)∧m ∧Map(K, X)+)) ,

and we endow Nat(Fn, Gn) with the subspace topology. Next we need to define
fiberwise natural transformations.

Definition 6. The space Nat(Fn, Gn) of fiberwise natural transformations is de-
fined to be the (strict) pullback of the diagram

Nat(Fn, Gn)
↓

n∏
m=0

Map∗ (K∧m, Q((Y/X)∧m ∧Map(K, X)+))

↑
n∏

m=0

Map∗(K∧m, Q((Y/X)∧m ∧Map∗(K, X)+))

where Map∗(K∧m, Q((Y/X)∧m ∧Map∗(K, X)+)) is as in definition 2.

Definition 7. For n ≥ 0 define

Pn
X QMap∗(K, Y ) = Nat(Fn, Gn).

We now present an inductive description of Pn
X QMap∗(K, Y ). Let

∆nK = {(k1 ∧ . . . ∧ kn) ∈ K∧n | ∃i, j i 6= j such that ki = kj} .

Lemma 2. For all n > 0 there exists a commutative square diagram

P n
X QMap∗(K, Y ) → Map∗(K∧n, Q((Y/X)∧n ∧Map∗(K, X)+))Σn

↓ ↓ ĩ

P n−1
X QMap∗(K, Y ) tn→ Map∗(∆nK, Q((Y/X)∧n ∧Map∗(K, X)+))Σn

which is both a strict pullback and a homotopy pullback.

Proof. Following [3], we define the twisted arrow category of Mn, denoted aMn, as
follows: The objects of aMn are the morphisms of Mn, and a morphism (m1 →
m2)→ (m′1 → m′2) is a square diagram

m1 ← m′1
↓ ↓

m2 → m′2
(note the twist in the directions of the horizontal maps). Define the aMn-diagram
homa(Fn, Gn) by

(m1 → m2) 7→ Map∗(Fn(m2), Gn(m1))

= Map∗(K
∧m2 , Q((Y/X)∧m1 ∧ F (K, X)+)).
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As noted in [3, proposition 3.2], it is easy to see that

Nat(Fn, Gn) = lim←
aMn homa(Fn, Gn).

We need a fiberwise version of this. Define the diagram homa(Fn, Gn) by

(m1 → m2) 7→ Map∗(K∧m2 , Q((Y/X)∧m1 ∧ F (K, X)+))

where the right hand side is the image of Map∗(K∧m2 , Q((Y/X)∧m2 ∧ F (K, X)+))
in Map∗(K∧m2 , Q((Y/X)∧m1∧F (K, X)+)) under the inclusion map associated with
the surjection m1 → m2. Again it is easy to see that

Nat(Fn, Gn) = lim←
aMnhoma(Fn, Gn).

Now we write aMn as a union of two categories aM1
n and aM2

n as follows: Let aM1
n

be the full subcategory of aMn whose objects are morphisms m1 → m2 such that
m2 ≤ n−1. Let aM2

n be the full subcategory of aMn whose objects are morphisms
m1 → m2 such that m1 = n. It is easy to see that the nerve of aMn is the union
of the nerves of aM1

n and aM2
n, and therefore there is a pullback square

lim←
aMnhoma(Fn, Gn) → lim←

aM2
nhoma(Fn, Gn)

↓ ↓
lim←

aM1
nhoma(Fn, Gn) → lim←

aM1
n∩aM2

nhoma(Fn, Gn)

To analyze

lim←
aM1

nhoma(Fn, Gn)

consider the full subcategory of aM1
n whose objects are surjections m1 → m2 such

that m1 ≤ n − 1. It is easy to see that this subcategory is initial in aM1
n, and

therefore

lim←
aM1

nhoma(Fn, Gn) ∼= Pn−1
X QMap∗(K, Y ).

To analyze

lim←
aM2

nhoma(Fn, Gn)

notice that the full subcategory of aM2
n whose objects are surjections n → n is

initial, and therefore

lim←
aM2

nhoma(Fn, Gn) ∼= Map∗(K∧n, Q((Y/X)∧n ∧Map∗(K, X)+))Σn .

Similarly, it is not very hard to check directly that

lim←
aM1

n∩aM2
nhoma(Fn, Gn) ∼= Map∗(∆nK, Q((Y/X)∧n ∧Map∗(K, X)+))Σn .

Thus a pullback square as in the statement of the lemma exists. It is easy to check
that the right vertical map is the restriction and thus a fibration by the fibration
lemma of section 2. Therefore the square is a homotopy pullback.

Corollary 2. The functor Pn
X QMap∗(K, Y ) is an excisive functor of degree n.

Moreover,

Di
XPn

X QMap∗(K, Y ) ' Map∗(K(i), Q((Y/X)∧i ∧Map∗(K, X)+))Σi

for all 0 ≤ i ≤ n.
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Proof. It follows from the previous lemma and the corollary of the fibration lemma
that the fiber of the map

Pn
X QMap∗(K, Y )→ Pn−1

X QMap∗(K, Y )

is homotopy equivalent to

Map∗(K(n), Q((Y/X)∧n ∧Map∗(K, X)+))Σn ,

which by theorem 1 is a homogeneous functor of degree n. The statement follows
by induction on n.

Next we need to construct natural maps

pn : QMap∗(K, Y )→ Pn
X QMap∗(K, Y )

such that for all n the diagrams

QMap∗(K, Y )
pn→ Pn

X QMap∗(K, Y )
↘ ↓

Pn−1
X QMap∗(K, Y )

commute, and show that these maps are highly enough connected.
To define pn, it is enough to define an unstable map

p̂n : Map∗(K, Y )→ Nat(K∧n, (Y/X)∧n ∧Map∗(K, X)+).

We define p̂n as follows:

p̂n(f)(k1, . . . , km) = f(k1) ∧ . . . ∧ f(kn) ∧ f,

where f is the composition

K
f→ Y

α→ X.

We are now ready to state our main theorem, whose proof is given in the next
subsection.

Theorem 2. The map pn defined above is (n+1)(k− d)-connected, where k is the
connectivity of Y/X and d is the dimension of K.

In other words, P n
X QMap∗(K, Y ) is a model for the n-th Taylor approximation

of QMap∗(K, Y ), and pn is a model for the approximation map.

Remark 2. The reader is encouraged to consider what our formula for

Pn
X QMap∗(K, Y )

simplifies to in the special case X = ∗, when “fiberwise” stops being an issue. It
might be illuminating to consider the even more special case K = SN , Y = SNZ.
Letting N go to infinity, one gets formulas for the Taylor tower of QQZ (over ∗),
which has to coincide, up to homotopy, with the classical splitting of QQZ. It is
easy to see, for instance, that for n = 2 our formula says that

P 2
∗QQZ ' QΣ2(Z

∧2)Σ2 ,

which by the tom Dieck splitting is equivalent to Q(Z)×Q(Z∧2
hΣ2

) (see [2]), just as
one would expect from the Snaith splitting.
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4.2. Proof of the main theorem. It is shown in [5, example 4.5] that the functor
Q(Map∗(K, Y )) is “analytic” enough. Therefore, to show that the map pn is as
connected as claimed, it is enough to show that it induces an equivalence on n-th
Taylor polynomials. For this it is enough to show that pn induces an equivalence
on differentials up to the n-th one. In fact, by induction it is enough to show
that pn induces an equivalence on the n-th differential. For this, it is enough to
show that the induced map on n-th cross-effects, which we denote χnpn, satisfies
the following connectivity condition: if Z1, . . . , Zn are k-connected then χnpn is
(n + 1)k + c-connected, where c is a constant not depending on Z1, . . . , Zn.

Let (x1, . . . , xn) be an n-tuple of points in X . It is easy to see from the definitions
(see the appendix) that the cross-effect at (x1, . . . , xn) satisfies

χnQ(Map∗(K, Y )) (Z1, Z2, . . . , Zn)

' Q

Map∗(K, X ∨x1 Z1 ∨x2 Z2 ∨ . . . ∨ Zn)
n⋃

i=1

Map∗(K, X ∨ . . . ∨ Ẑi ∨ . . . )


It is also easy to prove, using the fibration lemma and induction on the dimension
of Kn

1 in our usual way, that the cross-effect of the functor

Map∗(Kn
1 , Q((Y/X)n ∧Map∗(K, X)+))Σn

satisfies

χn Map∗(Kn
1 , Q((Y/X)∧n ∧Map∗(K, X)+))Σn

' Map∗(Kn
1 , Q((

∨
σ∈Σn

Zσ(1) ∧ . . . ∧ Zσ(n)) ∧Map∗(K, X)+))Σn

' Map∗(Kn
1 , Q((Zσ(1) ∧ . . . ∧ Zσ(n)) ∧Map∗(K, X)+)).

Moreover, since

Map∗(K(n), Q(Z∧n ∧Map∗(K, X)+))Σn

is the n-th differential of Pn
X QMap∗(K, Y ), the natural map

Map∗(K(n), Q(Z∧n ∧Map∗(K, X)+))Σn → Pn
X QMap∗(K, Y )

induces an equivalence after applying χn. Therefore we may regard

Map∗(K(n), Q((
∨

σ∈Σn

Zσ(1) ∧ . . . ∧ Zσ(n)) ∧Map∗(K, X)+))Σn

as a model for

χnPn
X QMap∗(K, Y ).

So, we need to describe χnpn in terms of these models for the cross-effects. We are
going to describe a map χnp̃n from

Map∗(K, X ∨ Z1 ∨ Z2 ∨ . . . ∨ Zn)
n⋃

i=1

Map∗(K, X ∨ . . . ∨ Ẑi ∨ . . . )
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to

Map∗(K(n), (
∨

σ∈Σn

Zσ(1) ∧ . . . ∧ Zσ(n)) ∧Map∗(K, X)+)Σn .

The map is defined as follows: Given a function f ∈ Map∗(K, X ∨ Z1 ∨ . . . ∨ Zn),
let f be the composition

K
f→ X ∨ Z1 ∨ . . . ∨ Zn → X.

If the point (k1
1 , k

2
1 , . . . , kn

1 ) is different from the basepoint and there exists a per-
mutation σ ∈ Σn such that f(ki

1) ∈ Zσ(i), then

χnp̃n(f)(k1
1 , k2

1 , . . . , kn
1 ) = f(kσ(1)

1 ) ∧ f(kσ(2)
1 ) ∧ . . . ∧ f(kσ(n)

1 ) ∧ f ;

otherwise,

χnp̃n(f)(k1
1 , k

2
1 , . . . , kn

1 ) = ∗.
The map χnpn is induced by χnp̃n. Our next step is to show that to prove that

χnpn satisfies the connectivity condition, it is enough to prove that the map χnp̃n

satisfies the connectivity condition.

Proposition 6. Let Z1, Z2, . . . , Zn be k-connected spaces, and let Kn
1 be a subquo-

tient of the space K×n such that the action of Σn on Kn
1 is free off the basepoint.

Then the stabilization map from

Map∗(Kn
1 ,

n!∨
i=1

(Z1 ∧ . . . ∧ Zn) ∧Map∗(K, X)+)Σn

to

Map∗(Kn
1 , Q(

n!∨
i=1

(Z1 ∧ . . . ∧ Zn) ∧Map∗(K, X)+))Σn

is 2nk + c-connected (and therefore (n + 1)k + c-connected).

Proof. The idea is the same as usual. That is, to use the fibration lemma to reduce
to the case when Kn

1 is an orbit of one point in K×n, in which the map is the
inclusion

Z1 ∧ . . . ∧ Zn ∧Map∗(K, k1, . . . , kn; X, x1 . . . xn)+
↓

Q (Z1 ∧ . . . ∧ Zn ∧Map∗(K, k1, . . . , kn; X, x1 . . . xn)+)

which is obviously 2nk-connected. As one proceeds with the induction, the connec-
tivity reduces by 1 at each step, so in the end c = − dim(K).

On the other hand, it is easy to see that if K is a finite complex of dimension d,
then the space

Map∗(K, X ∨ Z1 ∨ Z2 ∨ . . . ∨ Zn)
n⋃

i=1

Map∗(K, X ∨ . . . ∨ Ẑi ∨ . . . )
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is ∼ nk − nd-connected, and therefore the inclusion

Map∗(K, X ∨ Z1 ∨ Z2 ∨ . . . ∨ Zn)
n⋃

i=1

Map∗(K, X ∨ . . . ∨ Ẑi ∨ . . . )

↪→ Q

Map∗(K, X ∨ Z1 ∨ Z2 ∨ . . . ∨ Zn)
n⋃

i=1

Map∗(K, X ∨ . . . ∨ Ẑi ∨ . . . )


is 2nk − 2nd-connected, and in particular is ∼ (n + 1)k + c-connected.

Therefore, it is enough to prove that the map χnp̃n has the required connectivity
property.

It is enough to prove it in the case when K = M is a parallelizable compact
m-dimensional Riemannian manifold with boundary and a basepoint m0. It also
follows from Goodwillie’s classification of homogeneous functors that we may as-
sume Zi

∼= Sm Wi. In this case we can use the machinery of configuration spaces.
We will need suitable fiberwise versions of the classical results on approximation of
mapping spaces by configuration spaces.

Remark 3. The proof would have been much easier if we were content to prove the
case X ∼= ∗, which already is of interest. In this case we would only need classical
results from the theory of configuration spaces.

Let M be as above. Let C(M ; j) = (M \{m0})×j \∆jM be the space of j-tuples
of distinct points in M \ {m0}. Let Cε(M ; j) be the space of j-tuples of points
in M \ {m0} such that the distance between any two is at least 3ε and so is the
distance from the basepoint. Let x ∈ X .

Definition 8.

C(M ; j)×x Map∗(M, X) = {(m1, m2, . . .mj , f) ∈ C(M ; j)×Map∗(M, X) |
f(mi) = x∀1 ≤ i ≤ j}.

For W a based space, make the following definition:

Definition 9.

CX,x;W (M) =
∐
j≥0

(
C(M ; j)×x Map∗(M, X)×W j

)
≈

,

where ≈ stands for the usual identifications:

(i)

(〈m1, . . . , mi, mi+2, . . . , mj〉, f , 〈w1, . . . , wi, wi+2, . . . , wj〉)
≈ (〈m1, . . . , mi, mi+1, mi+2, . . . , mj〉, f , 〈w1, . . . , wi, ∗, wi+2, . . . , wj〉)

(ii)

(〈m1, . . . , mj〉, f , 〈w1, . . . , wj〉)
≈ (〈mσ(1), . . . , mσ(j)〉, f , 〈wσ(1), . . . , wσ(j)〉)

(iii)

(〈m1, . . . , mi, . . . , mj〉, f , 〈w1, . . . , wi, . . . , wj〉)
≈ (〈m1, . . . , m̂i, . . . , mj〉, f , 〈w1, . . . , ŵi, . . . , wj〉)

if mi ∈ ∂M .
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Similarly define the space Cε;X,x;W (M). There is a map⋃
ε≥0

Cε;X,x;W (M)× {ε} → CX,x;W (M)

which is a homotopy equivalence.
Let N and N ′ be two manifolds of the same dimension as M . Suppose that they

are embedded as closed submanifolds of M in such a way that M = N ∪ N ′ and
N ∩N ′ = ∂N ∩ ∂N ′.

Definition 10. We say that the inclusion N ↪→M is nice if
1) B = ∂N ∩ ∂N ′ is a submanifold of ∂N and of ∂N ′, and
2) each connected component of B has nonempty intersection with ∂M .

We will need the following:

Lemma 3. Let N ↪→M be a nice inclusion. Then the restriction map

CX,x;W (M)
↓r

CX,x;W (N)

is a quasifibration.

Proof. The proof is an adaptation of the corresponding proof in [9]. Filter the space∐
j≥0

(
C(N ; j)×x Map∗(N, X)×W j

)
≈

by the spaces

Ck =
j=k∐
j=0

(
C(N ; j)×x Map∗(N, X)×W j

)
≈

.

To prove that the map r is a quasifibration it is enough to prove that:
1) r : r−1(Ck+1 \Ck)→ Ck+1 \ Ck is a fibration with the same fiber for all k.
2) For each k there is an open subset Uk of Ck which contains Ck−1 and there

are homotopies

ht : Uk → Uk

and

Ht : r−1(Uk)→ r−1(Uk)

such that
a) h0 = id, ht(Ck−1) ⊆ Ck−1, h1(Uk) ⊆ Ck−1;
b) H0 = id, rHt = htr;
c) H1 : r−1(x)→ r−1(h1(x)) is a homotopy equivalence for all x ∈ Uk.
To prove (1) we need to show that for any commutative square of the form

In G→ r−1

((
C(N ; j)×x Map∗(N, X)× (W∧j \ ∗)

)
Σj

)
↓ ↓r

In+1 F→
(
C(N ; j)×x Map∗(N, X)× (W∧j \ ∗)

)
Σj
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there is a map

E : In+1 → r−1

((
C(N ; j)×x Map∗(N, X)× (W∧j \ ∗)

)
Σj

)
which commutes with all other maps in the square.

To prove this we introduce some more notation. Since the action of all symmetric
groups on Map∗(M, X) is trivial, it is clear that∐

j≥0

(
C(M ; j)×Map∗(M, X)×W j

)
≈

is homeomorphic to ∐
j≥0

(C(M ; j)×W j)


≈

×Map∗(M, X).

So we will think of the functions F , G, and E as products F = F1×F2, G = G1×G2,
E = E1 × E2, where F1 maps In+1 to (C(N ; j)× (W∧j \ ∗))Σj

, F2 maps In+1 to
Map∗(N, X), and so on. Of course the pairs (F1, F2), (G1, G2), (E1, E2) must
satisfy an additional condition, a version of the bar condition.

We denote In+1 = {(u, t) ∈ In × I}. Also, we think of a point in∐
j≥0

C(M ; j)×W j


≈

as a finite subset [S] of M \ ∂M whose points are labeled by points in W which are
different from the basepoint. Then, given two points [S] and [U ], one can obviously
define standard operations of set theory on them, such as their union [S ∪U ], their
set difference [S \ U ], etc.

We will construct the map

E : In+1 → r−1

((
C(N ; j)×x Map∗(N, X)× (W∧j) \ ∗

)
Σn

)
by constructing maps

E1 : In+1 →
∐

j≥0

C(M ; j)×W j


≈

and

E2 : In+1 → Map∗(M, X)

in such a way that they satisfy the bar condition and the image of E = E1 × E2

is in r−1

((
C(N ; j)×x Map∗(N, X)× (W∧j \ ∗)

)
Σn

)
and the map E commutes

with other maps in the square diagram.
First we define

E1((u, t)) = [F1(u, t) ∪ (G1(u) \N)].
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Clearly, this map is well defined and continuous. To show that it is possible to
define a map E2 such that E1 × E2 has all the desired properties we need to show
that there is a map

E2 : In+1 → Map∗(M, X)

such that:
1) the composition In+1 E2→ Map∗(M, X) restriction→ Map∗(N, X) is equal to F2;
2) the composition In → In+1 E2→ Map∗(M, X) is equal to G2.
3) E2((u, t))(m) = x ∀(u, t) ∈ In+1 ∀m ∈ (Im(E1(u, t)) \N).
So we can describe the situation as follows: we need to define a map

Ẽ2 : I×n × I ×M → X

which is already predetermined on the subset

In ×M ∪ In+1 ×N ∪ In+1 × (Im(G1) \N).

Moreover, the restriction of the map to In+1 × (Im(G1) \ N) is a constant map.
Clearly, the subspace (Im(G1) \ N) is separated from N in M , and there exists a
closed subspace O ⊂M such that:

(i) (Im(G1) \N) ⊂ O,
(ii) O has an open neighborhood disjoint with N ,
(iii) (M, N ∪O) is an NDR pair.
Choose O as above and extend Ẽ2 to In ×M ∪ In+1 × N ∪ In+1 × O in the

obvious way (sending O to the point x). Now the map can be extended to all of
In+1×M , since (M, N ∪O) is an NDR pair. This completes the proof of condition
(1) in our lemma.

By our assumption on B we may choose ε > 0 so that the set {y ∈M : d(y, B) <
2ε} is homeomorphic to to B×(−2ε, 2ε). Also, for small ε > 0, N \N2ε is homeomor-
phic to ∂N × [0, 2ε). It follows that there is a homotopy lt : (M, ∂M)→ (M, ∂M)
such that l0 = id, l1(Nε) = N and lt | l−1

t (M \ ∂M) is injective. Because of this
injectivity of lt, it induces a homotopy

(lt)∗ : CX,W (M)→ CX,W (M).

Let Uk be
{
[S] ∈ Ck(N) | card(S ∩Nε) ≤ k − 1

}
and let ht, Ht be the appro-

priate restrictions of (lt)∗. Clearly, subconditions (a) and (b) of condition (2) are
satisfied. It remains to prove that

H1 : r−1([S], f)→ r−1(h1[S], f)

is a homotopy equivalence for all ([S], f) in Uk

Clearly, each fiber r−1([S], f) is canonically isomorphic to

V =
∐
j≥0

(
C(N ′, ∂N ′ \B)×Map∗(N ′, B; X, f(B))×W j

)
≈

;

in terms of this identification H1 is a map H1 : V → V . In fact it is

([U ], f |N ′) 7→ ([l1(U) ∪w], f ◦ l1 |N ′),

where [w] = [l1(S) ∩ N ′] is a configuration in the neighborhood W = l1(N) ∩ N ′

of B in N ′. Now [l1(U)] lies outside W for all [U ] ∈
(
C(N ′, ∂N ′ \B)×W j

)
≈

.
Also, we assumed that each component of B has nonempty intersection with ∂M ,
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so that the configuration [w] can be connected to the empty configurations through
configurations in W . Therefore the map

([U ], f |N ′) 7→ ([l1(U) ∪ w], f ◦ l1 | N ′)
is homotopic to

([U ], f |N ′) 7→ ([l1(U)], f ◦ l1 ◦ (a homotopy equivalence of M) |N ′)

and this is homotopic to idF since l1 ' id.

We are now ready to prove the following fact.

Theorem 3. Let M be a parallelizable manifold of dimension m with nonempty
boundary. There is a map∐

j≥

(
Cε(M ; j)×x Map∗(M, X)×W j

)
≈
→ Map∗(M, X ∨x SmW )

which is a homotopy equivalence.

Proof. The map is defined the usual way. For each point mi, labeled by a point
wi, map the ε-ball centered at mi to the sphere over wi in SmW (since M is
parallelizable, we can do this in a canonical way) and map the rest of M to X as
determined by the map f ∈ Map∗(M, X), using the fact that the space obtained
from M by identifying j ε-balls to their centers is homeomorphic to M . To prove
that this map is an equivalence we need only to check that the assertion is true for
the case

M = S0 ×Dm.

Then the assertion for general M follows by induction on handles, which works
thanks to the previous lemma. See [9] for details.

In the case M = S0 ×Dm it is clear that

Map∗(M, X ∨ SmW ) ∼= Map∗(D
m, X ∨ SmW )×Map∗(D

m
+ , X ∨ SmW )

and ∐
j≥0

(
C(M ; j)×x Map∗(M, X)×W j

)
≈

∼=
∐
j≥0

(
C(Dm; j)×x Map∗(Dm, X)×W j

)
≈

×
∐
j≥0

(
C(Dm; j)×x Map∗(Dm

+ , X)×W j
)
≈

.

So, we need to prove that the maps∐
j≥0

(
C(Dm; j)×x Map∗(Dm, X)×W j

)
≈
→ Map∗(D

m, X ∨ SmW )

and ∐
j≥0

(
C(Dm; j)×x Map∗(Dm

+ , X)×W j
)
≈
→ Map∗(D

m
+ , X ∨ SmW )

are equivalences. This is easy to do directly and is left as an exercise to the reader.
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As a consequence, we get a generalization of the classical “stable splitting” the-
orem.

Lemma 4. Let M be an m -manifold. Then there are stable equivalences

Map∗(M, X ∨x SmW ) ' CX,x,W (M)

→
j=∞∨
j=0

C(M, ∂M ; j) ∧x Map∗(M, X)+ ∧Σj W∧j.

Proof. We have just proved the first equivalence in theorem 3. As for the second
equivalence, its meaning is that the filtration of the “fiberwise configuration space”
model stably splits into the wedge sum of its subquotients, which are easily seen to
be

C(M, ∂M ; j) ∧x Map∗(M, X)+ ∧W∧j .

The construction and proof of the second equivalence carry over from the proof of
the corresponding statement in [1]

Corollary 3. Let M be a parallelizable, compact, m-dimensional manifold with
boundary. The n-th differential of the functor Map∗(M, X ∨x SmW ) is given by

Dn
XQMap∗(M, X ∨x SmW ) ' Q

(
C(M, ∂M ; n) ∧x Map∗(M, X)+ ∧W∧n

)
Σn

.

Proof. By theorem 3. There is an equivalence∐
j≥0

(
Cε(M ; j)×x Map∗(M, X)×W j

)
≈
→ Map∗(M, X ∨ SmW ),

where the space on the right is filtered by the spaces

Cn =
j=n∐
j=0

(
Cε(M ; j)×x Map∗(M, X)×W j

)
≈

,

and it is easy to see that

Cn/Cn−1
∼=
(
C(M, ∂M ; n) ∧x Map∗(M, X)+ ∧W∧n

)
Σn

.

Clearly, if W is l-connected, then the quotient Cn/Cn−1 is nl-connected. In parti-
cular, this implies that the inclusion

Cn ↪→
∐
j≥0

(
C(M ; j)×x Map∗(M, X)×W j

)
≈

is (n + 1)l-connected. On the other hand, by lemma 4∐
j≥0

(
C(M ; j)×x Map∗(M, X)×W j

)
≈

stably splits into the product of the quotients. To summarize, there is an equivalence

QMap∗(M, X ∨ SmW ) '
∏
j≥0

Q

((
C(M, ∂M ; j) ∧x Map∗(M, X)+ ∧W∧j

)
Σj

)
.
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Clearly, Q

((
C(M, ∂M ; j) ∧x Map∗(M, X)+ ∧W∧j

)
Σj

)
is a homogeneous functor

of degree j, and therefore the functor
j=n∏
j=0

Q

((
C(M, ∂M ; j) ∧x Map∗(M, X)+ ∧W∧j

)
Σj

)
is a functor of degree n. Since there is a (weak) map

QMap∗(M, X ∨ SmW )→
j=n∏
j=0

Q

((
C(M, ∂M ; j) ∧x Map∗(M, X)+ ∧W∧j

)
Σj

)
which is (n+1)l-connected whenever W is l-connected, it must be true, by unique-
ness and universality of Goodwillie’s “Taylor approximations”, that

PnQMap∗(M, X ∨ SmW ) '
j=n∏
j=0

Q

((
C(M, ∂M ; j) ∧x Map∗(M, X)+ ∧W∧j

)
Σj

)
and

DnQMap∗(M, X ∨ SmW ) ' Q

((
C(M, ∂M ; n) ∧Map∗(M, X)+ ∧W∧n

)
Σn

)
.

It is clear now that, given an n-tuple (x1, . . . , xn) of points in X , the space of
maps

Map∗(M, X ∨x1 SmW1 ∨ . . . ∨xn SmWn)

can be approximated by means of appropriate fiberwise configuration spaces. More
specifically, it is clear that there is a map from

C(M, ∂M ; n) ∧(x1,... ,xn) Map∗(M, X)+ ∧W1 ∧W2 ∧ . . . ∧Wn

(defined in the obvious way) to

Map∗(M, X ∨ SmW1 ∨ SmW2 ∨ . . . ∨ SmWn)
n⋃

i=1

Map∗(K, X ∨ . . . ∨ ŜmWi ∨ . . . )

which is (n+1)k-connected whenever all Wi’s are k-connected. It remains to prove
that the composed map

C(M, ∂M ; n) ∧(x1,... ,xn) Map∗(M, X)+ ∧W1 ∧W2 ∧ . . . ∧Wn

↓
Map∗ (M, X ∨x1 SmW1 ∨x2 SmW2 ∨ . . . ∨xn SmWn)

n⋃
i=1

Map∗(K, X ∨ . . . ∨ ŜmWi ∨ . . . )

↓
Map∗

(
M (n), SmW1 ∧ . . . ∧ SmWn ∧Map∗(K, X)

)
satisfies the same connectivity condition.

In fact, we can prove a more general statement:
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Lemma 5. Let U = M (n) (so U \∗ is a manifold). Let U1 be a subspace of U . We
will say that the inclusion U1 ↪→ U is nice, if U \ ∗ is a manifold and the inclusion
U1 \ ∗ ↪→ U \ ∗ is nice. Then there is a configuration space model for

Map∗(U1, (Map∗(M, X)+ ∧ SmW1 ∧ . . . ∧ SmWn)).

More precisely, there is an equivalence∐
i≥0

(
C(U1 \ ∗; i)× (Map∗(M, X)+ ∧ (W1 ∧W2 ∧ . . . ∧Wn))i

)
≈

↓
Map∗(U1, Q(Map∗(M, X)+ ∧ SmW1 ∧ . . . ∧ SmWn)).

Proof. The idea of the proof is the same as in lemma 3. Given a subspace U2 of
U1, such that the inclusion U2 ↪→ U1 is nice, there is the following proposition

Proposition 7. The restriction map∐
i≥0

(
C(U1 \ ∗; i)× (Map∗(M, X)+ ∧ (W1 ∧W2 ∧ . . . ∧Wn))i

)
≈

↓∐
i≥0

(
C(U2 \ ∗; i)× (Map∗(M, X)+ ∧ (W1 ∧W2 ∧ . . . ∧Wn))i

)
≈

is a quasifibration.

Proof. The proof is similar to that of lemma 3, only easier.

Using this proposition, our lemma is proved by induction on handles.

Appendix A. Taylor towers

Following the conventions of ([4], [5], [6]), we say that a functor from spaces to
spaces is a homotopy functor, if it takes weak equivalences to weak equivalences
and commutes with mapping telescopes. We will work with homotopy functors
F : TX → D, where TX is the category of spaces containing a fixed space X as a
retract and D is either the category of based spaces or the category of spectra. The
calculus of functors is concerned with approximating such homotopy functors by
functors of a special kind, the so-called excisive functors or functors of finite degree,
which should be interpreted as “polynomial functors”.

The definition of excisive functors involves cubical diagrams of spaces (see [5] for
definitions). A cubical diagram of spaces is said to be strongly co-Cartesian if each
of its two-dimensional faces is a homotopy pushout square. A cubical diagram of
spaces is said to be Cartesian if it is a homotopy pullback cube. A homotopy functor
F is said to have degree n or equivalently to be n-excisive if it satisfies nth order
excision. This means that it takes n + 1 strongly co-Cartesian cubical diagrams
to n + 1 Cartesian cubical diagrams. For instance, a functor is 1-excisive (linear)
if it takes homotopy pushout squares to homotopy pullback squares. An example
of a linear functor is QY = Ω∞Σ∞Y . In general, any linear functor T∗ → D has
(up to natural weak homotopy equivalence) the form Ω∞(E∧ Y ), where E is some
spectrum.

A homotopy functor F is said to be analytic if, loosely speaking, it satisfies
n-th order excision in a stable range for all n (see [5, definition 4.2] for a precise
definition). Many of the familiar homotopy functors are analytic. For instance
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the identity functor, Waldhausen’s A-theory, and Map(K, X), where K is a finite
CW-complex, are analytic. All functors dealt with in this paper are analytic.

One of the main results of calculus of functors is that an analytic functor can
be approximated by functors of finite degree in much the same way as an analytic
function can be approximated by its Taylor polynomials. That is, to any analytic
functor there corresponds a tower of functors {PnF}n≥0 of degree n with maps
. . . → PnF → Pn−1F → . . . . This tower is uniquely determined (up to a natural
weak equivalence) by the universal property that for each n there is a natural map
F (X)→ PnF (X) that is roughly (n + 1)k-connected (here k is the connectivity of
Y in TX). This tower of functors is called the Taylor tower of the functor F .

A functor F is homogeneous of degree n if it is of degree n and Pn−1F ' ∗.
It is proved in [6] that the fibers of the maps PnF → Pn−1F are homogeneous
functors (of degree n). These functors are called the differentials of F and are
usually denoted DnF .

In [6] Goodwillie classified all homogeneous functors (whose domain is T∗) up to
natural weak equivalence. A homogeneous functor of degree n is determined by a
spectrum A endowed with an action of the group Σn and it has, up to natural weak
equivalence, the form Ω∞

[
(A ∧ Y ∧n)hΣn

]
. Its visual resemblance to the function

axn

n! further enhances the analogy with Taylor polynomials. Let F : T∗ → D be
a functor with DnF (Y ) ' Ω∞

(
(A ∧ Y ∧n)hΣn

)
; then we say that the spectrum

A, together with the action of Σn, is the n-th derivative of F at ∗ (of course,
the derivative of a functor is determined only up to a suitable notion of weak Σn-
equivariant pseudo-equivalence). Thus the n-th derivative of a functor defined on
T∗ is a spectrum with an action of Σn, or equivalently, a bundle of spectra over
BΣn.

For a general space X , the n-th derivative of a functor F : TX → D is a bundle
of spectra over Xn ×Σn EΣn. Equivalently, it is a bundle of spectra over Xn

with an action of Σn. The best way to define the n-th derivative is probably
via the n-th “cross-effect” of F . By definition, the n -th cross-effect of a functor
F : TX → D is a bundle over Xn of functors χnF : T×n∗ → D. The fiber at an n-
tuple (x1, . . . , xn) of this bundle is the iterated homotopy fiber of the n-dimensional
cube S 7→ F (X ∨xi1

Zi1 ∨ . . .∨xik
Zik

), where {i1, . . . , ik} is the complement of S in
{1, . . . , n}. The maps in the cube are induced by the obvious collapsing maps. It is
easily seen from the definitions that there is an action of Σn on χnF and that each
fiber is a reduced functor of (Z1, . . . , Zn). It follows that the multilinearization of
a fiber of χnF is given, up to homotopy, by

hoco lim
k1,... ,kn→∞

Ωk1+···+knχnF (Sk1Z1, . . . , SknZn).

We denote this functor by D(n)F . D(n)F is a symmetric multilinear functor, and
as such is represented by a spectrum with an action of Σn. This gives a bundle of
spectra over Xn ×Σn EΣn.

Obviously, there is some work in making all this precise, but it is not really
difficult.

The following theorem is proved in [6]

Theorem 4. Let F, G : TX → Spaces∗ be two homogeneous functors of degree n.
Let h : F → G be a natural transformation. h is a weak equivalence if and only if
it induces a weak equivalence of n-th derivatives.
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