Intersections of $\mathbb {Q}$-divisors on Kontsevich’s moduli space $\overline {M}_{0,n}(\mathbb {P}^r,d)$ and enumerative geometry
HTML articles powered by AMS MathViewer
- by Rahul Pandharipande
- Trans. Amer. Math. Soc. 351 (1999), 1481-1505
- DOI: https://doi.org/10.1090/S0002-9947-99-01909-1
- PDF | Request permission
Abstract:
The theory of $\mathbb Q$-Cartier divisors on the space of $n$-pointed, genus 0, stable maps to projective space is considered. Generators and Picard numbers are computed. A recursive algorithm computing all top intersection products of $\mathbb Q$-divisors is established. As a corollary, an algorithm computing all characteristic numbers of rational curves in $\mathbb P^r$ is proven (including simple tangency conditions). Computations of these characteristic numbers are carried out in many examples. The degree of the 1-cuspidal rational locus in the linear system of degree $d$ plane curves is explicitly evaluated.References
- V. Alexeev, Moduli Spaces $M_{g,n}(W)$ for Surfaces, in Higher-dimensional Complex Varieties (Trento, 1994), de Gruyter, Berlin, 1996, pp. 1–22.
- Paolo Aluffi, The enumerative geometry of plane cubics. II. Nodal and cuspidal cubics, Math. Ann. 289 (1991), no. 4, 543–572. MR 1103035, DOI 10.1007/BF01446588
- Hermann Kober, Transformationen von algebraischem Typ, Ann. of Math. (2) 40 (1939), 549–559 (German). MR 96, DOI 10.2307/1968939
- János Kollár, Robert Lazarsfeld, and David R. Morrison (eds.), Algebraic geometry—Santa Cruz 1995, Proceedings of Symposia in Pure Mathematics, vol. 62, American Mathematical Society, Providence, RI, 1997. MR 1492532, DOI 10.1090/pspum/062.2
- Sean Keel, Intersection theory of moduli space of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574. MR 1034665, DOI 10.1090/S0002-9947-1992-1034665-0
- Maxim Kontsevich, Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 335–368. MR 1363062, DOI 10.1007/978-1-4612-4264-2_{1}2
- M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244, DOI 10.1007/BF02101490
- Steven L. Kleiman and Robert Speiser, Enumerative geometry of nodal plane cubics, Algebraic geometry (Sundance, UT, 1986) Lecture Notes in Math., vol. 1311, Springer, Berlin, 1988, pp. 156–196. MR 951646, DOI 10.1007/BFb0082914
- S. Kleiman, S. A. Strømme, and S. Xambó, Sketch of a verification of Schubert’s number $5\,819\,539\,783\,680$ of twisted cubics, Space curves (Rocca di Papa, 1985) Lecture Notes in Math., vol. 1266, Springer, Berlin, 1987, pp. 156–180. MR 908713, DOI 10.1007/BFb0078183
- Rahul Pandharipande, The canonical class of $\overline {M}_{0,n}(\mathbf P^r,d)$ and enumerative geometry, Internat. Math. Res. Notices 4 (1997), 173–186. MR 1436774, DOI 10.1155/S1073792897000123
- Yongbin Ruan and Gang Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995), no. 2, 259–367. MR 1366548
- G. Saccheiro, Numeri Caratteristici delle Cubishe Piane Nodali, preprint 1985.
- H. Schubert, Kalkül der Abzählenden Geometrie, B. G. Teubner: Leipzig, 1879.
- H. Zeuthen, Almindelige Egenskaber, Danske Videnkabernes Selskabs Skrifter-Natur og Math, 10 (1873).
Bibliographic Information
- Rahul Pandharipande
- Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
- Address at time of publication: Department of Mathematics, California Institute of Technology, Pasadena, California 91125
- MR Author ID: 357813
- Email: rahulp@cco.caltech.edu
- Received by editor(s): March 11, 1996
- Additional Notes: Partially supported by an NSF Post-Doctoral Fellowship.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 1481-1505
- MSC (1991): Primary 14N10, 14H10; Secondary 14E99
- DOI: https://doi.org/10.1090/S0002-9947-99-01909-1
- MathSciNet review: 1407707