A counterexample concerning the relation between decoupling constants and UMD-constants
HTML articles powered by AMS MathViewer
- by Stefan Geiss
- Trans. Amer. Math. Soc. 351 (1999), 1355-1375
- DOI: https://doi.org/10.1090/S0002-9947-99-02093-0
- PDF | Request permission
Abstract:
For Banach spaces $X$ and $Y$ and a bounded linear operator $T:X \rightarrow Y$ we let $\rho (T):=\inf c$ such that \[ \left ( AV_{\theta _l = \pm 1} \left \|\sum \limits _{l=1}^\infty \theta _l \left ( \sum \limits _{k=\tau _{l-1}+1}^{\tau _l} h_k T x_k \right )\right \|_{L_2^Y}^2 \right )^{\frac {1}{2}} \le c \left \| \sum \limits _{k=1}^\infty h_k x_k \right \| _{L_2^X} \] for all finitely supported $(x_k)_{k=1}^\infty \subset X$ and all $0 = \tau _0 < \tau _1 < \cdots$, where $(h_k)_{k=1}^\infty \subset L_1[0,1)$ is the sequence of Haar functions. We construct an operator $T:X \rightarrow X$, where $X$ is superreflexive and of type 2, with $\rho (T)<\infty$ such that there is no constant $c>0$ with \[ \sup _{\theta _k = \pm 1} \left \| \sum \limits _{k=1}^\infty \theta _k h_k T x_k \right \| _{L_2^X} \le c \left \| \sum \limits _{k=1}^\infty h_k x_k \right \| _{L_2^X}. \]
In particular it turns out that the decoupling constants $\rho (I_X)$, where $I_X$ is the identity of a Banach space $X$, fail to be equivalent up to absolute multiplicative constants to the usual $\operatorname {UMD}$–constants. As a by-product we extend the characterization of the non–superreflexive Banach spaces by the finite tree property using lower 2–estimates of sums of martingale differences.
References
- D. J. Aldous, Unconditional bases and martingales in $L_{p}(F)$, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 117–123. MR 510406, DOI 10.1017/S0305004100055559
- Nakhlé Asmar and Stephen Montgomery-Smith, On the distribution of Sidon series, Ark. Mat. 31 (1993), no. 1, 13–26. MR 1230262, DOI 10.1007/BF02559495
- Bernard Beauzamy, Introduction to Banach spaces and their geometry, 2nd ed., North-Holland Mathematics Studies, vol. 68, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 86. MR 889253
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275, DOI 10.1007/978-3-642-66451-9
- Jöran Bergh and Jaak Peetre, On the spaces $V_{p}$ $(0<p\leq \infty )$, Boll. Un. Mat. Ital. (4) 10 (1974), 632–648 (English, with Italian summary). MR 0380389
- J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), no. 2, 163–168. MR 727340, DOI 10.1007/BF02384306
- Donald L. Burkholder, Martingales and Fourier analysis in Banach spaces, Probability and analysis (Varenna, 1985) Lecture Notes in Math., vol. 1206, Springer, Berlin, 1986, pp. 61–108. MR 864712, DOI 10.1007/BFb0076300
- Donald L. Burkholder, Explorations in martingale theory and its applications, École d’Été de Probabilités de Saint-Flour XIX—1989, Lecture Notes in Math., vol. 1464, Springer, Berlin, 1991, pp. 1–66. MR 1108183, DOI 10.1007/BFb0085167
- D. L. Burkholder, B. J. Davis, and R. F. Gundy, Integral inequalities for convex functions of operators on martingales, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 223–240. MR 0400380
- D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249–304. MR 440695, DOI 10.1007/BF02394573
- D. J. H. Garling, Random martingale transform inequalities, Probability in Banach spaces 6 (Sandbjerg, 1986) Progr. Probab., vol. 20, Birkhäuser Boston, Boston, MA, 1990, pp. 101–119. MR 1056706
- Adriano M. Garsia, Martingale inequalities: Seminar notes on recent progress, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973. MR 0448538
- Stefan Geiss, $\textrm {BMO}_\psi$-spaces and applications to extrapolation theory, Studia Math. 122 (1997), no. 3, 235–274. MR 1434474, DOI 10.4064/sm-122-3-235-274
- PawełHitczenko, Upper bounds for the $L_p$-norms of martingales, Probab. Theory Related Fields 86 (1990), no. 2, 225–238. MR 1065280, DOI 10.1007/BF01474643
- PawełHitczenko, Domination inequality for martingale transforms of a Rademacher sequence, Israel J. Math. 84 (1993), no. 1-2, 161–178. MR 1244666, DOI 10.1007/BF02761698
- Robert C. James, Some self-dual properties of normed linear spaces, Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967) Ann. of Math. Studies, No. 69, Princeton Univ. Press, Princeton, N.J., 1972, pp. 159–175. MR 0454600
- Robert C. James, Super-reflexive Banach spaces, Canadian J. Math. 24 (1972), 896–904. MR 320713, DOI 10.4153/CJM-1972-089-7
- Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. MR 1102015, DOI 10.1007/978-3-642-20212-4
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056, DOI 10.1007/978-3-642-66557-8
- B. Maurey, Système de Haar, Séminaire Maurey-Schwartz 1974–1975: Espaces $L^p$, applications radonifiantes et géométrie des espaces de Banach, Centre de Math., École Polytech., Paris, 1975, pp. Exp. Nos. I et II, 26 pp. (erratum, p. 1) (French). MR 0420839
- G. Pisier, Un exemple concernant la super-réflexivité, Séminaire Maurey-Schwartz 1974–1975: Espaces $L^p$, applications radonifiantes et géométrie des espaces de Banach, Centre de Math., École Polytech., Paris, 1975, pp. Annexe No. 2, 12 (French). MR 0410340
- Gilles Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326–350. MR 394135, DOI 10.1007/BF02760337
- Gilles Pisier and Quan Hua Xu, Random series in the real interpolation spaces between the spaces $v_p$, Geometrical aspects of functional analysis (1985/86), Lecture Notes in Math., vol. 1267, Springer, Berlin, 1987, pp. 185–209. MR 907695, DOI 10.1007/BFb0078146
- J. Wenzel. Personal communication.
Bibliographic Information
- Stefan Geiss
- Affiliation: Mathematisches Institut der Friedrich–Schiller–Universität, Postfach, D–O7740 Jena, Germany
- MR Author ID: 248903
- Email: geiss@minet.uni-jena.de
- Received by editor(s): November 4, 1996
- Received by editor(s) in revised form: April 8, 1997
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 1355-1375
- MSC (1991): Primary 46B07, 60G42; Secondary 46B70, 60B11
- DOI: https://doi.org/10.1090/S0002-9947-99-02093-0
- MathSciNet review: 1458301