Vertex operators for twisted quantum affine algebras
HTML articles powered by AMS MathViewer
- by Naihuan Jing and Kailash C. Misra
- Trans. Amer. Math. Soc. 351 (1999), 1663-1690
- DOI: https://doi.org/10.1090/S0002-9947-99-02098-X
- PDF | Request permission
Abstract:
We construct explicitly the $q$-vertex operators (intertwining operators) for the level one modules $V(\Lambda _i)$ of the classical quantum affine algebras of twisted types using interacting bosons, where $i=0, 1$ for $A_{2n-1}^{(2)}$ ($n\geq 3$), $i=0$ for $D_4^{(3)}$, $i=0, n$ for $D_{n+1}^{(2)}$ ($n\geq 2$), and $i=n$ for $A_{2n}^{(2)}$ ($n\geq 1$). A perfect crystal graph for $D_4^{(3)}$ is constructed as a by-product.References
- Brian Davies, Omar Foda, Michio Jimbo, Tetsuji Miwa, and Atsushi Nakayashiki, Diagonalization of the $XXZ$ Hamiltonian by vertex operators, Comm. Math. Phys. 151 (1993), no.Β 1, 89β153. MR 1201657, DOI 10.1007/BF02096750
- Etsur\B{o} Date, Michio Jimbo, and Masato Okado, Crystal base and $q$-vertex operators, Comm. Math. Phys. 155 (1993), no.Β 1, 47β69. MR 1228525, DOI 10.1007/BF02100049
- V. G. Drinfelβ²d, A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR 296 (1987), no.Β 1, 13β17 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no.Β 2, 212β216. MR 914215
- Igor B. Frenkel and Nai Huan Jing, Vertex representations of quantum affine algebras, Proc. Nat. Acad. Sci. U.S.A. 85 (1988), no.Β 24, 9373β9377. MR 973376, DOI 10.1073/pnas.85.24.9373
- I. B. Frenkel and N. Yu. Reshetikhin, Quantum affine algebras and holonomic difference equations, Comm. Math. Phys. 146 (1992), no.Β 1, 1β60. MR 1163666, DOI 10.1007/BF02099206
- Makoto Idzumi, Level $2$ irreducible representations of $U_q(\widehat {\textrm {sl}}_2)$, vertex operators, and their correlations, Internat. J. Modern Phys. A 9 (1994), no.Β 25, 4449β4484. MR 1295757, DOI 10.1142/S0217751X94001771
- Michio Jimbo, Kei Miki, Tetsuji Miwa, and Atsushi Nakayashiki, Correlation functions of the $XXZ$ model for $\Delta <-1$, Phys. Lett. A 168 (1992), no.Β 4, 256β263. MR 1178036, DOI 10.1016/0375-9601(92)91128-E
- Michio Jimbo and Tetsuji Miwa, Algebraic analysis of solvable lattice models, CBMS Regional Conference Series in Mathematics, vol. 85, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1995. MR 1308712
- Nai Huan Jing, Twisted vertex representations of quantum affine algebras, Invent. Math. 102 (1990), no.Β 3, 663β690. MR 1074490, DOI 10.1007/BF01233443
- Naihuan Jing, Higher level representations of the quantum affine algebra $U_q(\widehat {\mathrm {sl}}(2))$, J. Algebra 182 (1996), no.Β 2, 448β468. MR 1391593, DOI 10.1006/jabr.1996.0180
- N. Jing, On Drinfeld realization of quantum affine algebras, in The Monster and Lie Algebras, ed. J. Ferrar and K. Harada, Ohio State Univ. Math. Res. Publ. 7, de Gruyter, Berlin-New York, 1998. q-alg/9610035.
- Nai Huan Jing, Seok-Jin Kang, and Yoshitaka Koyama, Vertex operators of quantum affine Lie algebras $U_q(D^{(1)}_n)$, Comm. Math. Phys. 174 (1995), no.Β 2, 367β392. MR 1362170, DOI 10.1007/BF02099607
- Naihuan Jing and Kailash C. Misra, Vertex operators of level-one $U_q(B^{(1)}_n)$-modules, Lett. Math. Phys. 36 (1996), no.Β 2, 127β143. MR 1371304, DOI 10.1007/BF00714376
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki, Affine crystals and vertex models, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp.Β 449β484. MR 1187560, DOI 10.1142/s0217751x92003896
- Akishi Kato, Yas-Hiro Quano, and Junβichi Shiraishi, Free boson representation of $q$-vertex operators and their correlation functions, Comm. Math. Phys. 157 (1993), no.Β 1, 119β137. MR 1244862, DOI 10.1007/BF02098022
- Yoshitaka Koyama, Staggered polarization of vertex models with $U_q(\widehat {\textrm {sl}(n)})$-symmetry, Comm. Math. Phys. 164 (1994), no.Β 2, 277β291. MR 1289326, DOI 10.1007/BF02101703
- Atsushi Matsuo, A $q$-deformation of Wakimoto modules, primary fields and screening operators, Comm. Math. Phys. 160 (1994), no.Β 1, 33β48. MR 1262190, DOI 10.1007/BF02099788
Bibliographic Information
- Naihuan Jing
- Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695
- MR Author ID: 232836
- Email: jing@eos.ncsu.edu
- Kailash C. Misra
- Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695
- MR Author ID: 203398
- Email: misra@math.ncsu.edu
- Received by editor(s): August 30, 1996
- Received by editor(s) in revised form: March 11, 1997
- Additional Notes: The first author is supported in part by NSA grants MDA 904-94-H-2061 and MDA 904-96-1-0087. The second author is supported in part by NSA grant MDA 904-96-1-0013.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 1663-1690
- MSC (1991): Primary 17B37, 17B67; Secondary 82B23, 81R10, 81R50
- DOI: https://doi.org/10.1090/S0002-9947-99-02098-X
- MathSciNet review: 1458306