## Vertex operators for twisted quantum affine algebras

HTML articles powered by AMS MathViewer

- by Naihuan Jing and Kailash C. Misra
- Trans. Amer. Math. Soc.
**351**(1999), 1663-1690 - DOI: https://doi.org/10.1090/S0002-9947-99-02098-X
- PDF | Request permission

## Abstract:

We construct explicitly the $q$-vertex operators (intertwining operators) for the level one modules $V(\Lambda _i)$ of the classical quantum affine algebras of twisted types using interacting bosons, where $i=0, 1$ for $A_{2n-1}^{(2)}$ ($n\geq 3$), $i=0$ for $D_4^{(3)}$, $i=0, n$ for $D_{n+1}^{(2)}$ ($n\geq 2$), and $i=n$ for $A_{2n}^{(2)}$ ($n\geq 1$). A perfect crystal graph for $D_4^{(3)}$ is constructed as a by-product.## References

- Brian Davies, Omar Foda, Michio Jimbo, Tetsuji Miwa, and Atsushi Nakayashiki,
*Diagonalization of the $XXZ$ Hamiltonian by vertex operators*, Comm. Math. Phys.**151**(1993), no.Β 1, 89β153. MR**1201657**, DOI 10.1007/BF02096750 - Etsur\B{o} Date, Michio Jimbo, and Masato Okado,
*Crystal base and $q$-vertex operators*, Comm. Math. Phys.**155**(1993), no.Β 1, 47β69. MR**1228525**, DOI 10.1007/BF02100049 - V. G. Drinfelβ²d,
*A new realization of Yangians and of quantum affine algebras*, Dokl. Akad. Nauk SSSR**296**(1987), no.Β 1, 13β17 (Russian); English transl., Soviet Math. Dokl.**36**(1988), no.Β 2, 212β216. MR**914215** - Igor B. Frenkel and Nai Huan Jing,
*Vertex representations of quantum affine algebras*, Proc. Nat. Acad. Sci. U.S.A.**85**(1988), no.Β 24, 9373β9377. MR**973376**, DOI 10.1073/pnas.85.24.9373 - I. B. Frenkel and N. Yu. Reshetikhin,
*Quantum affine algebras and holonomic difference equations*, Comm. Math. Phys.**146**(1992), no.Β 1, 1β60. MR**1163666**, DOI 10.1007/BF02099206 - Makoto Idzumi,
*Level $2$ irreducible representations of $U_q(\widehat {\textrm {sl}}_2)$, vertex operators, and their correlations*, Internat. J. Modern Phys. A**9**(1994), no.Β 25, 4449β4484. MR**1295757**, DOI 10.1142/S0217751X94001771 - Michio Jimbo, Kei Miki, Tetsuji Miwa, and Atsushi Nakayashiki,
*Correlation functions of the $XXZ$ model for $\Delta <-1$*, Phys. Lett. A**168**(1992), no.Β 4, 256β263. MR**1178036**, DOI 10.1016/0375-9601(92)91128-E - Michio Jimbo and Tetsuji Miwa,
*Algebraic analysis of solvable lattice models*, CBMS Regional Conference Series in Mathematics, vol. 85, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1995. MR**1308712** - Nai Huan Jing,
*Twisted vertex representations of quantum affine algebras*, Invent. Math.**102**(1990), no.Β 3, 663β690. MR**1074490**, DOI 10.1007/BF01233443 - Naihuan Jing,
*Higher level representations of the quantum affine algebra $U_q(\widehat {\mathrm {sl}}(2))$*, J. Algebra**182**(1996), no.Β 2, 448β468. MR**1391593**, DOI 10.1006/jabr.1996.0180 - N. Jing,
*On Drinfeld realization of quantum affine algebras*, in The Monster and Lie Algebras, ed. J. Ferrar and K. Harada, Ohio State Univ. Math. Res. Publ. 7, de Gruyter, Berlin-New York, 1998. q-alg/9610035. - Nai Huan Jing, Seok-Jin Kang, and Yoshitaka Koyama,
*Vertex operators of quantum affine Lie algebras $U_q(D^{(1)}_n)$*, Comm. Math. Phys.**174**(1995), no.Β 2, 367β392. MR**1362170**, DOI 10.1007/BF02099607 - Naihuan Jing and Kailash C. Misra,
*Vertex operators of level-one $U_q(B^{(1)}_n)$-modules*, Lett. Math. Phys.**36**(1996), no.Β 2, 127β143. MR**1371304**, DOI 10.1007/BF00714376 - Victor G. Kac,
*Infinite-dimensional Lie algebras*, 3rd ed., Cambridge University Press, Cambridge, 1990. MR**1104219**, DOI 10.1017/CBO9780511626234 - Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki,
*Affine crystals and vertex models*, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp.Β 449β484. MR**1187560**, DOI 10.1142/s0217751x92003896 - Akishi Kato, Yas-Hiro Quano, and Junβichi Shiraishi,
*Free boson representation of $q$-vertex operators and their correlation functions*, Comm. Math. Phys.**157**(1993), no.Β 1, 119β137. MR**1244862**, DOI 10.1007/BF02098022 - Yoshitaka Koyama,
*Staggered polarization of vertex models with $U_q(\widehat {\textrm {sl}(n)})$-symmetry*, Comm. Math. Phys.**164**(1994), no.Β 2, 277β291. MR**1289326**, DOI 10.1007/BF02101703 - Atsushi Matsuo,
*A $q$-deformation of Wakimoto modules, primary fields and screening operators*, Comm. Math. Phys.**160**(1994), no.Β 1, 33β48. MR**1262190**, DOI 10.1007/BF02099788

## Bibliographic Information

**Naihuan Jing**- Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695
- MR Author ID: 232836
- Email: jing@eos.ncsu.edu
**Kailash C. Misra**- Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695
- MR Author ID: 203398
- Email: misra@math.ncsu.edu
- Received by editor(s): August 30, 1996
- Received by editor(s) in revised form: March 11, 1997
- Additional Notes: The first author is supported in part by NSA grants MDA 904-94-H-2061 and MDA 904-96-1-0087. The second author is supported in part by NSA grant MDA 904-96-1-0013.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**351**(1999), 1663-1690 - MSC (1991): Primary 17B37, 17B67; Secondary 82B23, 81R10, 81R50
- DOI: https://doi.org/10.1090/S0002-9947-99-02098-X
- MathSciNet review: 1458306