Hardy spaces, BMO, and boundary value problems for the Laplacian on a smooth domain in $\mathbf R^N$
HTML articles powered by AMS MathViewer
- by Der-Chen Chang, Galia Dafni and Elias M. Stein
- Trans. Amer. Math. Soc. 351 (1999), 1605-1661
- DOI: https://doi.org/10.1090/S0002-9947-99-02111-X
- PDF | Request permission
Abstract:
We study two different local $H^p$ spaces, $0 < p \leq 1$, on a smooth domain in $\mathbf {R}^n$, by means of maximal functions and atomic decomposition. We prove the regularity in these spaces, as well as in the corresponding dual BMO spaces, of the Dirichlet and Neumann problems for the Laplacian.References
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623โ727. MR 125307, DOI 10.1002/cpa.3160120405
- Der-Chen Chang, The dual of Hardy spaces on a bounded domain in $\textbf {R}^n$, Forum Math. 6 (1994), no.ย 1, 65โ81. MR 1253178, DOI 10.1515/form.1994.6.65
- Der-Chen Chang, Steven G. Krantz, and Elias M. Stein, $H^p$ theory on a smooth domain in $\textbf {R}^N$ and elliptic boundary value problems, J. Funct. Anal. 114 (1993), no.ย 2, 286โ347. MR 1223705, DOI 10.1006/jfan.1993.1069
- G. Dafni, Hardy Spaces on Strongly Pseudoconvex Domains in $\mathbb {C}^n$ and Domains of Finite Type in $\mathbb {C}^2$, Ph.D. Thesis, Princeton University, 1993.
- G. Dafni, Distributions supported in a hypersurface and local $h^p$, Proc. Amer. Math. Soc. 126 (1998), 2933โ2943.
- Gerald B. Folland, Introduction to partial differential equations, Mathematical Notes, Princeton University Press, Princeton, N.J., 1976. Preliminary informal notes of university courses and seminars in mathematics. MR 0599578, DOI 10.1515/9780691213033
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no.ย 3-4, 137โ193. MR 447953, DOI 10.1007/BF02392215
- David Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), no.ย 1, 27โ42. MR 523600
- P. C. Greiner and E. M. Stein, Estimates for the $\overline \partial$-Neumann problem, Mathematical Notes, No. 19, Princeton University Press, Princeton, N.J., 1977. MR 0499319
- Peter W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), no.ย 1, 41โ66. MR 554817, DOI 10.1512/iumj.1980.29.29005
- Alf Jonsson, Peter Sjรถgren, and Hans Wallin, Hardy and Lipschitz spaces on subsets of $\textbf {R}^n$, Studia Math. 80 (1984), no.ย 2, 141โ166. MR 781332, DOI 10.4064/sm-80-2-141-166
- S. G. Krantz, S. Y. Li, Elliptic boundary value problems for the inhomogeneous Laplace equation on bounded domains, preprint.
- Akihiko Miyachi, $H^p$ spaces over open subsets of $\textbf {R}^n$, Studia Math. 95 (1990), no.ย 3, 205โ228. MR 1060724, DOI 10.4064/sm-95-3-205-228
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- V. S. Rychkov, Intrinsic characterizations of distribution spaces on domains, Studia Math. 127 (1998), 227โ298.
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
Bibliographic Information
- Der-Chen Chang
- Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
- Address at time of publication: Department of Mathematics, Georgetown University, Washingon, DC 20057
- MR Author ID: 47325
- Email: drc@math.umd.edu
- Galia Dafni
- Affiliation: Department of Mathematics & Statistics, Concordia University, Montreal, Quebec H3G-1M8, Canada
- MR Author ID: 255789
- ORCID: 0000-0002-5078-7724
- Email: gdafni@discrete.concordia.ca
- Elias M. Stein
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- MR Author ID: 166825
- Email: stein@math.princeton.edu
- Received by editor(s): September 5, 1996
- Received by editor(s) in revised form: March 20, 1997
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 1605-1661
- MSC (1991): Primary 35J25, 42B25; Secondary 46E15, 42B30
- DOI: https://doi.org/10.1090/S0002-9947-99-02111-X
- MathSciNet review: 1458319