## Limit sets of discrete groups of isometries of exotic hyperbolic spaces

HTML articles powered by AMS MathViewer

- by Kevin Corlette and Alessandra Iozzi PDF
- Trans. Amer. Math. Soc.
**351**(1999), 1507-1530 Request permission

## Abstract:

Let $\Gamma$ be a geometrically finite discrete group of isometries of hyperbolic space $\mathcal {H}_{\mathbb {F}}^n$, where $\mathbb {F}= \mathbb {R}, \mathbb {C}, \mathbb {H}$ or $\mathbb {O}$ (in which case $n=2$). We prove that the critical exponent of $\Gamma$ equals the Hausdorff dimension of the limit sets $\Lambda (\Gamma )$ and that the smallest eigenvalue of the Laplacian acting on square integrable functions is a quadratic function of either of them (when they are sufficiently large). A generalization of Hopf ergodicity theorem for the geodesic flow with respect to the Bowen-Margulis measure is also proven.## References

- Michael T. Anderson,
*The Dirichlet problem at infinity for manifolds of negative curvature*, J. Differential Geom.**18**(1983), no. 4, 701–721 (1984). MR**730923** - D. V. Anosov,
*Geodesic flows on closed Riemann manifolds with negative curvature.*, Proceedings of the Steklov Institute of Mathematics, No. 90 (1967), American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by S. Feder. MR**0242194** - Wayman L. Strother,
*Continuous multi-valued functions*, Bol. Soc. Mat. São Paulo**10**(1955), 87–120 (1958). MR**122961** - Bishop, C. and Jones, P.,
*Hausdorff dimension and Kleinian groups*, preprint. - Marc Bourdon,
*Structure conforme au bord et flot géodésique d’un $\textrm {CAT}(-1)$-espace*, Enseign. Math. (2)**41**(1995), no. 1-2, 63–102 (French, with English and French summaries). MR**1341941** - B. H. Bowditch,
*Geometrical finiteness for hyperbolic groups*, J. Funct. Anal.**113**(1993), no. 2, 245–317. MR**1218098**, DOI 10.1006/jfan.1993.1052 - Kevin Corlette,
*Hausdorff dimensions of limit sets. I*, Invent. Math.**102**(1990), no. 3, 521–541. MR**1074486**, DOI 10.1007/BF01233439 - P. Eberlein and B. O’Neill,
*Visibility manifolds*, Pacific J. Math.**46**(1973), 45–109. MR**336648**, DOI 10.2140/pjm.1973.46.45 - Goldman, W.,
*A user’s guide to complex hyperbolic geometry*, Oxford Math. Monographs (to appear). - Gromov, M.,
*Asymptotic geometry of homogeneous spaces*, Conference on Differential geometry on homogeneous spaces (Torino, 1983), Rend. Sem. Mat. Univ. Politec. Torino 1983, Fasc. Spec.**59-60**(1984). - Sigurdur Helgason,
*Groups and geometric analysis*, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR**754767** - Sigurdur Helgason,
*Differential geometry, Lie groups, and symmetric spaces*, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**514561** - Hopf, E.,
*Ergodentheorie*, Ergebnisse der Mathematik, Band 5, no.2, Springer-Verlag, 1937. - Eberhard Hopf,
*Ergodic theory and the geodesic flow on surfaces of constant negative curvature*, Bull. Amer. Math. Soc.**77**(1971), 863–877. MR**284564**, DOI 10.1090/S0002-9904-1971-12799-4 - Vadim A. Kaimanovich,
*Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds*, Ann. Inst. H. Poincaré Phys. Théor.**53**(1990), no. 4, 361–393 (English, with French summary). Hyperbolic behaviour of dynamical systems (Paris, 1990). MR**1096098** - John Mitchell,
*On Carnot-Carathéodory metrics*, J. Differential Geom.**21**(1985), no. 1, 35–45. MR**806700** - G. D. Mostow,
*Strong rigidity of locally symmetric spaces*, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR**0385004** - Pansu, P., Thèse.
- Pierre Pansu,
*Une inégalité isopérimétrique sur le groupe de Heisenberg*, C. R. Acad. Sci. Paris Sér. I Math.**295**(1982), no. 2, 127–130 (French, with English summary). MR**676380** - Pierre Pansu,
*Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un*, Ann. of Math. (2)**129**(1989), no. 1, 1–60 (French, with English summary). MR**979599**, DOI 10.2307/1971484 - S. J. Patterson,
*The limit set of a Fuchsian group*, Acta Math.**136**(1976), no. 3-4, 241–273. MR**450547**, DOI 10.1007/BF02392046 - Robert S. Strichartz,
*Sub-Riemannian geometry*, J. Differential Geom.**24**(1986), no. 2, 221–263. MR**862049** - Dennis Sullivan,
*The density at infinity of a discrete group of hyperbolic motions*, Inst. Hautes Études Sci. Publ. Math.**50**(1979), 171–202. MR**556586**, DOI 10.1007/BF02684773 - Dennis Sullivan,
*Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups*, Acta Math.**153**(1984), no. 3-4, 259–277. MR**766265**, DOI 10.1007/BF02392379 - Dennis Sullivan,
*Related aspects of positivity in Riemannian geometry*, J. Differential Geom.**25**(1987), no. 3, 327–351. MR**882827** - Yue, C.,
*The ergodic theory of discrete isometry groups of manifolds of variable negative curvature*, preprint. - Saunders MacLane,
*Steinitz field towers for modular fields*, Trans. Amer. Math. Soc.**46**(1939), 23–45. MR**17**, DOI 10.1090/S0002-9947-1939-0000017-3

## Additional Information

**Kevin Corlette**- Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
- Email: kevin@math.uchicago.edu
**Alessandra Iozzi**- Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
- MR Author ID: 199039
- Email: iozzi@math.umd.edu
- Received by editor(s): February 27, 1995
- Received by editor(s) in revised form: April 15, 1997
- Additional Notes: K. C. received support from a Sloan Foundation Fellowship, an NSF Presidential Young Investigator award, and NSF grant DMS-9203765. A. I. received support from NSF grants DMS 9001959, DMS 9100383 and DMS 8505550.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**351**(1999), 1507-1530 - MSC (1991): Primary 58F11; Secondary 53C35, 58F17
- DOI: https://doi.org/10.1090/S0002-9947-99-02113-3
- MathSciNet review: 1458321