Universal constraints on the range of eigenmaps and spherical minimal immersions
HTML articles powered by AMS MathViewer
- by Gabor Toth
- Trans. Amer. Math. Soc. 351 (1999), 1423-1443
- DOI: https://doi.org/10.1090/S0002-9947-99-02252-7
- PDF | Request permission
Abstract:
The purpose of this paper is to give lower estimates on the range dimension of spherical minimal immersions in various settings. The estimates are obtained by showing that infinitesimal isometric deformations (with respect to a compact Lie group acting transitively on the domain) of spherical minimal immersions give rise to a contraction on the moduli space of the immersions and a suitable power of the contraction brings all boundary points into the interior of the moduli space.References
- Eugenio Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geometry 1 (1967), 111–125. MR 233294
- Dennis DeTurck and Wolfgang Ziller, Minimal isometric immersions of spherical space forms in spheres, Comment. Math. Helv. 67 (1992), no. 3, 428–458. MR 1171304, DOI 10.1007/BF02566512
- Manfredo P. do Carmo and Nolan R. Wallach, Minimal immersions of spheres into spheres, Ann. of Math. (2) 93 (1971), 43–62. MR 278318, DOI 10.2307/1970752
- James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 164306, DOI 10.2307/2373037
- Norio Ejiri, Totally real submanifolds in a $6$-sphere, Proc. Amer. Math. Soc. 83 (1981), no. 4, 759–763. MR 630028, DOI 10.1090/S0002-9939-1981-0630028-6
- Christine M. Escher, Minimal isometric immersions of inhomogeneous spherical space forms into spheres—a necessary condition for existence, Trans. Amer. Math. Soc. 348 (1996), no. 9, 3713–3732. MR 1370639, DOI 10.1090/S0002-9947-96-01694-7
- Escher Ch., On inhomogeneous space forms, Preprint, Oregon State University, 1997.
- Hillel Gauchman and Gabor Toth, Fine structure of the space of spherical minimal immersions, Trans. Amer. Math. Soc. 348 (1996), no. 6, 2441–2463. MR 1348151, DOI 10.1090/S0002-9947-96-01588-7
- Katsuya Mashimo, Minimal immersions of $3$-dimensional sphere into spheres, Osaka J. Math. 21 (1984), no. 4, 721–732. MR 765352
- John Douglas Moore, Isometric immersions of space forms in space forms, Pacific J. Math. 40 (1972), 157–166. MR 305312, DOI 10.2140/pjm.1972.40.157
- Tsunero Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380–385. MR 198393, DOI 10.2969/jmsj/01840380
- Gábor Tóth, Classification of quadratic harmonic maps of $S^3$ into spheres, Indiana Univ. Math. J. 36 (1987), no. 2, 231–239. MR 891772, DOI 10.1512/iumj.1987.36.36013
- Gábor Tóth, Harmonic maps and minimal immersions through representation theory, Perspectives in Mathematics, vol. 12, Academic Press, Inc., Boston, MA, 1990. MR 1042100
- Gabor Toth, Eigenmaps and the space of minimal immersions between spheres, Indiana Univ. Math. J. 46 (1997), no. 2, 637–658. MR 1481607, DOI 10.1512/iumj.1997.46.1975
- Toth G.-Ziller W., Spherical minimal immersions of the $3$-sphere, Comment. Math. Helvetici (to appear).
- N. Ja. Vilenkin, Special functions and the theory of group representations, Translations of Mathematical Monographs, Vol. 22, American Mathematical Society, Providence, R.I., 1968. Translated from the Russian by V. N. Singh. MR 0229863, DOI 10.1090/mmono/022
- Nolan R. Wallach, Minimal immersions of symmetric spaces into spheres, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), Pure and Appl. Math., Vol. 8, Dekker, New York, 1972, pp. 1–40. MR 0407774
- Joseph A. Wolf, Spaces of constant curvature, McGraw-Hill Book Co., New York-London-Sydney, 1967. MR 0217740
Bibliographic Information
- Gabor Toth
- Affiliation: Department of Mathematics, Rutgers University, Camden, New Jersey 08102
- Email: gtoth@crab.rutgers.edu
- Received by editor(s): April 20, 1997
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 1423-1443
- MSC (1991): Primary 53C42
- DOI: https://doi.org/10.1090/S0002-9947-99-02252-7
- MathSciNet review: 1487632