Local tomography with nonsmooth attenuation
HTML articles powered by AMS MathViewer
- by A. I. Katsevich
- Trans. Amer. Math. Soc. 351 (1999), 1947-1974
- DOI: https://doi.org/10.1090/S0002-9947-99-02160-1
- Published electronically: January 27, 1999
- PDF | Request permission
Abstract:
Local tomography for the Radon transform with nonsmooth attenuation is proposed and justified. The main theoretical tool is analysis of singularities of pseudodifferential operators with nonsmooth symbols. Results of numerical testing of local tomography are presented.References
- Michael Beals and Michael Reed, Microlocal regularity theorems for nonsmooth pseudodifferential operators and applications to nonlinear problems, Trans. Amer. Math. Soc. 285 (1984), no. 1, 159–184. MR 748836, DOI 10.1090/S0002-9947-1984-0748836-7
- Carlos A. Berenstein and David F. Walnut, Local inversion of the Radon transform in even dimensions using wavelets, 75 years of Radon transform (Vienna, 1992) Conf. Proc. Lecture Notes Math. Phys., IV, Int. Press, Cambridge, MA, 1994, pp. 45–69. MR 1313923
- Gregory Beylkin, The inversion problem and applications of the generalized Radon transform, Comm. Pure Appl. Math. 37 (1984), no. 5, 579–599. MR 752592, DOI 10.1002/cpa.3160370503
- Norman Bleistein and Richard A. Handelsman, Asymptotic expansions of integrals, 2nd ed., Dover Publications, Inc., New York, 1986. MR 863284
- Stanley R. Deans, The Radon transform and some of its applications, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. MR 709591
- Adel Faridani, Erik L. Ritman, and Kennan T. Smith, Local tomography, SIAM J. Appl. Math. 52 (1992), no. 2, 459–484. MR 1154783, DOI 10.1137/0152026
- A. Faridani, D. Finch, E.L. Ritman, and K.T. Smith, Local tomography II, SIAM J. Appl. Math. 57 (1997), 1095–1127.
- I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Academic Press, New York-London, 1964. Translated by Eugene Saletan. MR 0166596
- Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, Mathematical Surveys, No. 14, American Mathematical Society, Providence, R.I., 1977. MR 0516965, DOI 10.1090/surv/014
- L. E. Dickson, All integers except $23$ and $239$ are sums of eight cubes, Bull. Amer. Math. Soc. 45 (1939), 588–591. MR 28, DOI 10.1090/S0002-9904-1939-07041-9
- Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. Pseudodifferential operators. MR 781536
- A.I. Katsevich, Local tomography for the generalized Radon transform, SIAM J. Appl. Math. 57 (4) (1997), 1128-1162.
- —, Local tomography for the limited-angle problem, J. Math. Anal. Appl. 213 (1997), 160–182.
- A. I. Katsevich and A. G. Ramm, Asymptotics of PDO on discontinuous functions near singular support, Appl. Anal. 58 (1995), no. 3-4, 383–390. MR 1383200, DOI 10.1080/00036819508840384
- A. I. Katsevich and A. G. Ramm, Finding jumps of a function using local tomography, PanAmer. Math. J. 6 (1996), no. 2, 1–21. MR 1382552
- —, New methods for finding values of the jumps of a function from its local tomographic data, Inverse Problems 11 (5) (1995), 1005–1023.
- Peter Kuchment, Kirk Lancaster, and Lyudmila Mogilevskaya, On local tomography, Inverse Problems 11 (1995), no. 3, 571–589. MR 1333096, DOI 10.1088/0266-5611/11/3/006
- Peter Kuchment and Iosiph Shneiberg, Some inversion formulas in the single photon emission computed tomography, Appl. Anal. 53 (1994), no. 3-4, 221–231. MR 1379409, DOI 10.1080/00036819408840258
- Leonid A. Kunyansky, Generalized and attenuated Radon transforms: restorative approach to the numerical inversion, Inverse Problems 8 (1992), no. 5, 809–819. MR 1185600, DOI 10.1088/0266-5611/8/5/008
- Jürgen Marschall, Parametrices for nonregular elliptic pseudodifferential operators, Math. Nachr. 159 (1992), 175–188. MR 1237109, DOI 10.1002/mana.19921590113
- Jürgen Marschall, On the boundedness and compactness of nonregular pseudo-differential operators, Math. Nachr. 175 (1995), 231–262. MR 1355020, DOI 10.1002/mana.19951750113
- I. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), 590–622. MR 81, DOI 10.1215/S0012-7094-39-00549-1
- A. G. Ramm, Optimal local tomography formulas, PanAmer. Math. J. 4 (1994), no. 4, 125–127. MR 1310327
- A. G. Ramm, Finding discontinuities from tomographic data, Proc. Amer. Math. Soc. 123 (1995), no. 8, 2499–2505. MR 1273517, DOI 10.1090/S0002-9939-1995-1273517-6
- Alexander G. Ramm, Necessary and sufficient conditions for a PDO to be a local tomography operator, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 7, 613–618 (English, with English and French summaries). MR 1386462
- A. G. Ramm and A. I. Katsevich, The Radon transform and local tomography, CRC Press, Boca Raton, FL, 1996. MR 1384070
- A. G. Ramm and A. I. Zaslavsky, Singularities of the Radon transform, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 1, 109–115. MR 1168516, DOI 10.1090/S0273-0979-1993-00350-1
- A. G. Ramm and A. I. Zaslavsky, Reconstructing singularities of a function from its Radon transform, Math. Comput. Modelling 18 (1993), no. 1, 109–138. MR 1245197, DOI 10.1016/0895-7177(93)90083-B
- M. A. Shubin, Pseudodifferential operators and spectral theory, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987. Translated from the Russian by Stig I. Andersson. MR 883081, DOI 10.1007/978-3-642-96854-9
- K.T. Smith and F. Keinert, Mathematical foundations of computed tomography, Appl. Optics (1985), 3950 – 3957.
- Michael E. Taylor, Pseudodifferential operators and nonlinear PDE, Progress in Mathematics, vol. 100, Birkhäuser Boston, Inc., Boston, MA, 1991. MR 1121019, DOI 10.1007/978-1-4612-0431-2
- Oleh Tretiak and Charles Metz, The exponential Radon transform, SIAM J. Appl. Math. 39 (1980), no. 2, 341–354. MR 588505, DOI 10.1137/0139029
- E.I. Vainberg, I.A. Kazak, and V.P. Kurczaev, Reconstruction of the internal three-dimensional structure of objects based on real-time integral projections, Soviet J. Nondest. Test. 17 (1981), 415–423.
- R. Wong, Asymptotic approximations of integrals, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1989. MR 1016818
Bibliographic Information
- A. I. Katsevich
- Affiliation: Los Alamos National Laboratory, MS K-990, Los Alamos, New Mexico 87545
- Address at time of publication: Department of Mathematics, University of Central Florida, Orlando, Florida 32816-1364
- MR Author ID: 320907
- Email: akatsevi@pegasus.cc.ucf.edu
- Received by editor(s): May 30, 1996
- Received by editor(s) in revised form: November 13, 1996
- Published electronically: January 27, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 1947-1974
- MSC (1991): Primary 35S99, 44A12, 65R10, 92C55
- DOI: https://doi.org/10.1090/S0002-9947-99-02160-1
- MathSciNet review: 1466950