A Gauss-Kusmin theorem for optimal continued fractions
HTML articles powered by AMS MathViewer
- by Karma Dajani and Cor Kraaikamp
- Trans. Amer. Math. Soc. 351 (1999), 2055-2079
- DOI: https://doi.org/10.1090/S0002-9947-99-02177-7
- Published electronically: January 27, 1999
- PDF | Request permission
Abstract:
A Gauss-Kusmin theorem for the Optimal Continued Fraction (OCF) expansion is obtained. In order to do so, first a Gauss-Kusmin theorem is derived for the natural extension of the ergodic system underlying Hurwitz’s Singular Continued Fraction (SCF) (and similarly for the continued fraction to the nearer integer (NICF)). Since the NICF, SCF and OCF are all examples of maximal $S$-expansions, it follows from a result of Kraaikamp that the SCF and OCF are metrically isomorphic. This isomorphism is then used to carry over the results for the SCF to any other maximal $S$-expansion, in particular to the OCF. Along the way, a Heilbronn-theorem is obtained for any maximal $S$-expansion.References
- K. I. Babenko, A problem of Gauss, Dokl. Akad. Nauk SSSR 238 (1978), no. 5, 1021–1024 (Russian). MR 0472746
- Wieb Bosma, Optimal continued fractions, Nederl. Akad. Wetensch. Indag. Math. 49 (1987), no. 4, 353–379. MR 922441, DOI 10.1016/1385-7258(87)90001-1
- Wieb Bosma and Cor Kraaikamp, Metrical theory for optimal continued fractions, J. Number Theory 34 (1990), no. 3, 251–270. MR 1049504, DOI 10.1016/0022-314X(90)90135-E
- Wieb Bosma and Cor Kraaikamp, Optimal approximation by continued fractions, J. Austral. Math. Soc. Ser. A 50 (1991), no. 3, 481–504. MR 1096898, DOI 10.1017/S1446788700033036
- W. Bosma, H. Jager, and F. Wiedijk, Some metrical observations on the approximation by continued fractions, Nederl. Akad. Wetensch. Indag. Math. 45 (1983), no. 3, 281–299. MR 718069, DOI 10.1016/1385-7258(83)90063-X
- Karma Dajani and Cor Kraaikamp, Generalization of a theorem of Kusmin, Monatsh. Math. 118 (1994), no. 1-2, 55–73. MR 1289848, DOI 10.1007/BF01305774
- Gauss, C.F. – Mathemitisches Tagebuch 1796-1814, Ostwald’s Klassiker der exakten Wissenschaften 256, Geest und Portig, Leipzig, 1976.
- Marius Iosifescu, A very simple proof of a generalization of the Gauss-Kuzmin-Lévy theorem on continued fractions, and related questions, Rev. Roumaine Math. Pures Appl. 37 (1992), no. 10, 901–914. MR 1195091
- H. Jager, The distribution of certain sequences connected with the continued fraction, Nederl. Akad. Wetensch. Indag. Math. 48 (1986), no. 1, 61–69. MR 834320, DOI 10.1016/1385-7258(86)90006-5
- Keller, O.H. – Eine Bemerkung zu den verschiedenen Möglichkeiten eine Zahl in einen Kettenbruch zu entwickeln, Math. Ann., 116 (1939), 733-741.
- Donald E. Knuth, The distribution of continued fraction approximations, J. Number Theory 19 (1984), no. 3, 443–448. MR 769794, DOI 10.1016/0022-314X(84)90083-0
- Cor Kraaikamp, A new class of continued fraction expansions, Acta Arith. 57 (1991), no. 1, 1–39. MR 1093246, DOI 10.4064/aa-57-1-1-39
- Cornelis Kraaikamp, Maximal $S$-expansions are Bernoulli shifts, Bull. Soc. Math. France 121 (1993), no. 1, 117–131 (English, with English and French summaries). MR 1207247, DOI 10.24033/bsmf.2203
- Cor Kraaikamp, Statistic and ergodic properties of Minkowski’s diagonal continued fraction, Theoret. Comput. Sci. 65 (1989), no. 2, 197–212. MR 1020487, DOI 10.1016/0304-3975(89)90044-3
- Kusmin, R.O. – Sur un probléme de Gauss, Atti Congr. Bologne, 6 (1928), 83-89.
- Lévy, P. – Sur le loi de probabilité dont dependent les quotients complets et incomplets d’une fraction continue, Bull. Soc. Math. de France, 57 (1929), 178-194.
- Hitoshi Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math. 4 (1981), no. 2, 399–426. MR 646050, DOI 10.3836/tjm/1270215165
- Perron, O. – Die Lehre von den Kettenbrüchen, Chelsea, New York (1929).
- G. J. Rieger, Ein Gauss-Kusmin-Levy-Satz für Kettenbrüche nach nächsten Ganzen, Manuscripta Math. 24 (1978), no. 4, 437–448 (German). MR 568143, DOI 10.1007/BF01168885
- G. J. Rieger, Über die mittlere Schrittanzahl bei Divisionsalgorithmen, Math. Nachr. 82 (1978), 157–180 (German). MR 480366, DOI 10.1002/mana.19780820115
- Andrew M. Rockett, The metrical theory of continued fractions to the nearer integer, Acta Arith. 38 (1980/81), no. 2, 97–103. MR 604225, DOI 10.4064/aa-38-2-97-103
- Fritz Schweiger, Metrische Theorie einer Klasse zahlentheoretischer Transformationen, Acta Arith. 15 (1968), 1–18 (German). MR 254006, DOI 10.4064/aa-15-1-1-18
- Schweiger, F. – Ergodic Properties of Fibered Systems and Metric Number Theory, Clarendon Press, Oxford, 1995.
- Clas-Olof Selenius, Konstruktion und Theorie Halbregelmässiger Kettenbrüche mit idealer relativer Approximation, Acta Acad. Aboensis 22 (1960), no. 2, 77 (German). MR 154852
- P. Szüsz, Über einen Kusminschen Satz, Acta Math. Acad. Sci. Hungar. 12 (1961), 447–453 (German). MR 150121, DOI 10.1007/BF02023927
- Eduard Wirsing, On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces, Acta Arith. 24 (1973/74), 507–528. MR 337868, DOI 10.4064/aa-24-5-507-528
Bibliographic Information
- Karma Dajani
- Affiliation: Faculteit Wiskunde en Informatica, Budapestlaan 6, P.O. Box 80.010, 3508TA Utrecht, The Netherlands
- Email: dajani@math.ruu.nl
- Cor Kraaikamp
- Affiliation: Technische Universiteit Delft and Thomas Stieltjes Institute for Mathematics, Fac. ITS (SSOR), Mekelweg 4, 2628 CD Delft, The Netherlands
- Email: c.kraaikamp@its.tudelft.nl
- Received by editor(s): December 12, 1996
- Published electronically: January 27, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 2055-2079
- MSC (1991): Primary 28D05, 11K50
- DOI: https://doi.org/10.1090/S0002-9947-99-02177-7
- MathSciNet review: 1473436