Criteria of algebraic independence with multiplicities and interpolation determinants
HTML articles powered by AMS MathViewer
- by Michel Laurent and Damien Roy
- Trans. Amer. Math. Soc. 351 (1999), 1845-1870
- DOI: https://doi.org/10.1090/S0002-9947-99-02216-3
- Published electronically: January 19, 1999
- PDF | Request permission
Abstract:
We generalize Gel’fond’s criterion of algebraic independence by taking into account the values of the derivatives of the polynomials, and show how the new criterion applies to proving results of algebraic independence using interpolation determinants. We also establish a new result of approximation of a transcendental number by algebraic numbers of bounded degree and size. It contains an earlier result of E. Wirsing and also a result announced by A. Durand.References
- W. Dale Brownawell, Sequences of Diophantine approximations, J. Number Theory 6 (1974), 11–21. MR 337803, DOI 10.1016/0022-314X(74)90004-3
- Alain Durand, Approximations algébriques d’un nombre transcendant, Cinquante ans de polynômes (Paris, 1988) Lecture Notes in Math., vol. 1415, Springer, Berlin, 1990, pp. 94–96 (French). MR 1044106, DOI 10.1007/BFb0084880
- Hermann Kober, Transformationen von algebraischem Typ, Ann. of Math. (2) 40 (1939), 549–559 (German). MR 96, DOI 10.2307/1968939
- Michel Laurent, Sur quelques résultats récents de transcendance, Astérisque 198-200 (1991), 209–230 (1992) (French). Journées Arithmétiques, 1989 (Luminy, 1989). MR 1144324
- Michel Laurent, Linear forms in two logarithms and interpolation determinants, Acta Arith. 66 (1994), no. 2, 181–199. MR 1276987, DOI 10.4064/aa-66-2-181-199
- Patrice Philippon, Lemmes de zéros dans les groupes algébriques commutatifs, Bull. Soc. Math. France 114 (1986), no. 3, 355–383 (French, with English summary). MR 878242, DOI 10.24033/bsmf.2060
- Damien Roy and Michel Waldschmidt, Quadratic relations between logarithms of algebraic numbers, Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), no. 7, 151–153. MR 1363903
- D. Roy et M. Waldschmidt, Approximation diophantienne et indépendance algébrique de logarithmes, Ann. Sci. École Norm. Sup. 30 (1997), 753–796.
- R. Tijdeman, On the algebraic independence of certain numbers, Nederl. Akad. Wetensch. Proc. Ser. A 74=Indag. Math. 33 (1971), 146–162. MR 0294264, DOI 10.1016/S1385-7258(71)80021-5
- M. Waldschmidt, Linear independence of logarithms of algebraic numbers, The Institute of Mathematical Sciences, Madras, IMSc. Report 116, 1992.
- Michel Waldschmidt, Nombres transcendants, Lecture Notes in Mathematics, Vol. 402, Springer-Verlag, Berlin-New York, 1974 (French). MR 0360483, DOI 10.1007/BFb0065320
- Michel Waldschmidt, Suites colorées d’après G. V. Čudnovs′kiĭ, Séminaire Delange-Pisot-Poitou, 17e année: 1975/76, Théorie des nombres: Fasc. 2, Secrétariat Math., Paris, 1977, pp. Exp. No. G21, 11 (French). MR 0480373
- Eduard Wirsing, Approximation mit algebraischen Zahlen beschränkten Grades, J. Reine Angew. Math. 206 (1961), 67–77 (German). MR 142510, DOI 10.1515/crll.1961.206.67
Bibliographic Information
- Michel Laurent
- Affiliation: Institut de Mathématiques de Luminy, CNRS, 163 Avenue de Luminy, Case 907, 13288 Marseille Cédex 9, France
- Email: laurent@iml.univ-mrs.fr
- Damien Roy
- Affiliation: Département de Mathématiques, Université d’Ottawa, 585 King Edward, Ottawa, Ontario, Canada K1N 6N5
- MR Author ID: 265895
- Email: droy@mathstat.uottawa.ca
- Received by editor(s): March 12, 1997
- Published electronically: January 19, 1999
- Additional Notes: Second author partially supported by NSERC and CICMA
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 1845-1870
- MSC (1991): Primary 11J85; Secondary 11J04
- DOI: https://doi.org/10.1090/S0002-9947-99-02216-3
- MathSciNet review: 1475689