Simple families of Thue inequalities
HTML articles powered by AMS MathViewer
- by Günter Lettl, Attila Pethő and Paul Voutier
- Trans. Amer. Math. Soc. 351 (1999), 1871-1894
- DOI: https://doi.org/10.1090/S0002-9947-99-02244-8
- Published electronically: January 26, 1999
- PDF | Request permission
Abstract:
We use the hypergeometric method to solve three families of Thue inequalities of degree 3, 4 and 6, respectively, each of which is parametrized by an integral parameter. We obtain bounds for the solutions, which are astonishingly small compared to similar results which use estimates of linear forms in logarithms.References
- A. Baker, Rational approximations to $\root 3\of 2$ and other algebraic numbers, Quart. J. Math. Oxford Ser. (2) 15 (1964), 375–383. MR 171750, DOI 10.1093/qmath/15.1.375
- Michael A. Bennett, Effective measures of irrationality for certain algebraic numbers, J. Austral. Math. Soc. Ser. A 62 (1997), no. 3, 329–344. MR 1443552, DOI 10.1017/S144678870000104X
- Jian Hua Chen, A new solution of the Diophantine equation $X^2+1=2Y^4$, J. Number Theory 48 (1994), no. 1, 62–74. MR 1284874, DOI 10.1006/jnth.1994.1052
- Jian Hua Chen and Paul Voutier, Complete solution of the Diophantine equation $X^2+1=dY^4$ and a related family of quartic Thue equations, J. Number Theory 62 (1997), no. 1, 71–99. MR 1430002, DOI 10.1006/jnth.1997.2018
- G. V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math. (2) 117 (1983), no. 2, 325–382. MR 690849, DOI 10.2307/2007080
- J. H. E. Cohn, Equations with equivalent roots, Acta Arith. 34 (1977/78), no. 1, 37–41. MR 457346, DOI 10.4064/aa-34-1-37-41
- David Easton, Effective irrationality measures for certain algebraic numbers, Math. Comp. 46 (1986), no. 174, 613–622. MR 829632, DOI 10.1090/S0025-5718-1986-0829632-4
- Marie-Nicole Gras, Familles d’unités dans les extensions cycliques réelles de degré $6$ de $\textbf {Q}$, Théorie des nombres, Années 1984/85–1985/86, Fasc. 2, Publ. Math. Fac. Sci. Besançon, Univ. Franche-Comté, Besançon, 1986, pp. Exp. No. 2, 27 (French). MR 898667
- Andrew J. Lazarus, On the class number and unit index of simplest quartic fields, Nagoya Math. J. 121 (1991), 1–13. MR 1096465, DOI 10.1017/S0027763000003378
- G. Lettl and A. Pethő, Complete solution of a family of quartic Thue equations, Abh. Math. Sem. Univ. Hamburg 65 (1995), 365–383. MR 1359142, DOI 10.1007/BF02953340
- G. Lettl, A. Pethő and P. Voutier, On the arithmetic of simplest sextic fields and related Thue equations, Number Theory: Diophantine, Computational and Algebraic Aspects (K. Győry, A. Pethő and V.T. Sós, eds.), Walter de Gruyter Publ. Co., 1998, 331–348.
- Falko Lorenz, Lineare Algebra. II, 2nd ed., Bibliographisches Institut, Mannheim, 1989 (German). MR 1001759
- Kevin S. McCurley, Explicit estimates for $\theta (x;3,l)$ and $\psi (x;3,l)$, Math. Comp. 42 (1984), no. 165, 287–296. MR 726005, DOI 10.1090/S0025-5718-1984-0726005-8
- Maurice Mignotte, Verification of a conjecture of E. Thomas, J. Number Theory 44 (1993), no. 2, 172–177. MR 1225951, DOI 10.1006/jnth.1993.1043
- M. Mignotte, A. Pethő, and F. Lemmermeyer, On the family of Thue equations $x^3-(n-1)x^2y-(n+2)xy^2-y^3=k$, Acta Arith. 76 (1996), no. 3, 245–269. MR 1397316, DOI 10.4064/aa-76-3-245-269
- Maurice Mignotte, Attila Pethő, and Ralf Roth, Complete solutions of a family of quartic Thue and index form equations, Math. Comp. 65 (1996), no. 213, 341–354. MR 1316596, DOI 10.1090/S0025-5718-96-00662-X
- Attila Pethő, On the resolution of Thue inequalities, J. Symbolic Comput. 4 (1987), no. 1, 103–109. MR 908418, DOI 10.1016/S0747-7171(87)80059-7
- Attila Pethő, Complete solutions to families of quartic Thue equations, Math. Comp. 57 (1991), no. 196, 777–798. MR 1094956, DOI 10.1090/S0025-5718-1991-1094956-7
- Olivier Ramaré and Robert Rumely, Primes in arithmetic progressions, Math. Comp. 65 (1996), no. 213, 397–425. MR 1320898, DOI 10.1090/S0025-5718-96-00669-2
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- Emma Lehmer, Connection between Gaussian periods and cyclic units, Math. Comp. 50 (1988), no. 182, 535–541. MR 929551, DOI 10.1090/S0025-5718-1988-0929551-0
- Daniel Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137–1152. MR 352049, DOI 10.1090/S0025-5718-1974-0352049-8
- Emery Thomas, Complete solutions to a family of cubic Diophantine equations, J. Number Theory 34 (1990), no. 2, 235–250. MR 1042497, DOI 10.1016/0022-314X(90)90154-J
- P. M. Voutier, Rational approximations to $\sqrt [3 ]{2}$ and other algebraic numbers revisited, Indag. Math. (to appear).
Bibliographic Information
- Günter Lettl
- Affiliation: Institut für Mathematik, Karl-Franzens-Universität, Heinrichstraße 36, A-8010 Graz, Austria
- Email: guenter.lettl@kfunigraz.ac.at
- Attila Pethő
- Affiliation: Department of Mathematics and Informatics, Lajos Kossuth University, P.O. Box 12, H-4010 Debrecen, Hungary
- MR Author ID: 189083
- Email: pethoe@math.klte.hu
- Paul Voutier
- Affiliation: Department of Mathematics, University of Colorado, Boulder, Colorado 80309
- Address at time of publication: Optrak Distribution Software Ltd., Cawthorne House, 51 St. Andrew Street, Hertford SG14 1HZ, Great Britain
- Email: paul@optrak.co.uk
- Received by editor(s): March 31, 1997
- Published electronically: January 26, 1999
- Additional Notes: Research of the first author was supported by the Hungarian-Austrian governmental scientific and technological cooperation.
Research of the second author was supported by the Hungarian National Foundation for Scientific Research Grant No. 16791/95. - © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 1871-1894
- MSC (1991): Primary 11J25, 11J82; Secondary 11D25, 11D41
- DOI: https://doi.org/10.1090/S0002-9947-99-02244-8
- MathSciNet review: 1487624