Linking forms, reciprocity for Gauss sums and invariants of 3-manifolds
HTML articles powered by AMS MathViewer
- by Florian Deloup
- Trans. Amer. Math. Soc. 351 (1999), 1895-1918
- DOI: https://doi.org/10.1090/S0002-9947-99-02304-1
- Published electronically: January 27, 1999
- PDF | Request permission
Abstract:
We study invariants of $3$-manifolds derived from finite abelian groups equipped with quadratic forms. These invariants arise in Turaev’s theory of modular categories and generalize those of H. Murakami, T. Ohtsuki and M. Okada. The crucial algebraic tool is a new reciprocity formula for Gauss sums, generalizing classical formulas of Cauchy, Kronecker, Krazer and Siegel. We use this reciprocity formula to give an explicit formula for the invariants and to generalize them to higher dimensions.References
- Richard Bellman, A brief introduction to theta functions, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York, 1961. MR 0125252, DOI 10.1017/s0025557200044491
- Bruce C. Berndt and Ronald J. Evans, The determination of Gauss sums, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 107–129. MR 621882, DOI 10.1090/S0273-0979-1981-14930-2
- F. van der Blij, An invariant of quadratic forms mod $8$, Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. 21 (1959), 291–293. MR 0108467
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
- Gregory W. Brumfiel and John W. Morgan, Quadratic functions, the index modulo $8$, and a $\textbf {Z}/4$-Hirzebruch formula, Topology 12 (1973), 105–122. MR 324709, DOI 10.1016/0040-9383(73)90001-3
- K. Chandrasekharan, Elliptic functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 281, Springer-Verlag, Berlin, 1985. MR 808396, DOI 10.1007/978-3-642-52244-4
- R. Dabrowski, Multivariate Gauss sums, preprint, Columbia University 1995.
- F. Deloup, Linking forms, reciprocity for Gauss sums and invariants of $3$-manifolds, prépublication de l’IRMA no. 26, Strasbourg 1996.
- Alan H. Durfee, Bilinear and quadratic forms on torsion modules, Advances in Math. 25 (1977), no. 2, 133–164. MR 480333, DOI 10.1016/0001-8708(77)90002-0
- A. Fröhlich, Hermitian and quadratic forms over rings with involution, Quart. J. Math. Oxford Ser. (2) 20 (1969), 297–317. MR 252422, DOI 10.1093/qmath/20.1.297
- Akio Kawauchi and Sadayoshi Kojima, Algebraic classification of linking pairings on $3$-manifolds, Math. Ann. 253 (1980), no. 1, 29–42. MR 594531, DOI 10.1007/BF01457818
- Robion Kirby, A calculus for framed links in $S^{3}$, Invent. Math. 45 (1978), no. 1, 35–56. MR 467753, DOI 10.1007/BF01406222
- Robion C. Kirby, The topology of $4$-manifolds, Lecture Notes in Mathematics, vol. 1374, Springer-Verlag, Berlin, 1989. MR 1001966, DOI 10.1007/BFb0089031
- A. Krazer, Zur Theorie der mehrfachen Gaußschen Summen, H. Weber Festschrift, Leipzig (1912), s. 181.
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- J. Lannes, Formes quadratiques d’enlacement sur l’anneau des entiers d’un corps de nombres, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 4, 535–579 (French). MR 412102, DOI 10.24033/asens.1301
- John Milnor and Dale Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, New York-Heidelberg, 1973. MR 0506372, DOI 10.1007/978-3-642-88330-9
- Josef Mattes, Michael Polyak, and Nikolai Reshetikhin, On invariants of $3$-manifolds derived from abelian groups, Quantum topology, Ser. Knots Everything, vol. 3, World Sci. Publ., River Edge, NJ, 1993, pp. 324–338. MR 1273582, DOI 10.1142/9789812796387_{0}018
- Hitoshi Murakami, Tomotada Ohtsuki, and Masae Okada, Invariants of three-manifolds derived from linking matrices of framed links, Osaka J. Math. 29 (1992), no. 3, 545–572. MR 1181121
- H. Murakami, Quantum SO(3)-invariants dominate the SU(2)-invariant of Casson and Walker, preprint, Osaka University, 1992.
- T. Ohtsuki, A polynomial invariant of rational homology $3$-spheres, preprint, 1994.
- Lucien Guillou and Alexis Marin (eds.), À la recherche de la topologie perdue, Progress in Mathematics, vol. 62, Birkhäuser Boston, Inc., Boston, MA, 1986 (French). I. Du côté de chez Rohlin. II. Le côté de Casson. [I. Rokhlin’s way. II. Casson’s way]. MR 900243
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- Chih Han Sah, Symmetric bilinear forms and quadratic forms, J. Algebra 20 (1972), 144–160. MR 294378, DOI 10.1016/0021-8693(72)90094-4
- W. Scharlau, Quadratic and hermitian forms, Heidelberg, New York, Tokyo, Springer-Verlag, 1986.
- C. L. Siegel, Uber die analytische Theorie der quadratischen Formen, Ann. Math., 36 (1935), 527.
- T. A. Springer, Caractères quadratiques de groupes abéliens finis et sommes de Gauss, Bull. Soc. Math. France Suppl. Mém. 48 (1976), 103–115 (French). Colloque sur les Formes Quadratiques (Montpellier, 1975). MR 562091
- V. G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994. MR 1292673, DOI 10.1515/9783110883275
- V. Turaev, Cohomology rings, linking forms and invariants of spin structures of three-dimensional manifolds, Math. USSR Sbornik, Vol. 48 (1984) No.1.
- V. Turaev, private conversation, 1995.
- C. T. C. Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1963), 281–298. MR 156890, DOI 10.1016/0040-9383(63)90012-0
Bibliographic Information
- Florian Deloup
- Affiliation: Institut de Recherche en Mathématiques Avancées 7, rue René Descartes 67084 Strasbourg, France
- Address at time of publication: Laboratoire de Mathématiques, Emile Picard, Université Paul Sabatier, Toulouse III, 118, route de Narbonne, 31062 Toulouse, France
- Email: deloup@math.u-strasbg.fr
- Received by editor(s): April 22, 1997
- Published electronically: January 27, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 1895-1918
- MSC (1991): Primary 11E81, 57N10
- DOI: https://doi.org/10.1090/S0002-9947-99-02304-1
- MathSciNet review: 1603898