The diagonal subring and the Cohen-Macaulay property of a multigraded ring
HTML articles powered by AMS MathViewer
- by Eero Hyry
- Trans. Amer. Math. Soc. 351 (1999), 2213-2232
- DOI: https://doi.org/10.1090/S0002-9947-99-02143-1
- Published electronically: February 23, 1999
- PDF | Request permission
Abstract:
Let $T$ be a multigraded ring defined over a local ring $(A,\mathfrak {m})$. This paper deals with the question how the Cohen-Macaulay property of $T$ is related to that of its diagonal subring $T^\Delta$. In the bigraded case we are able to give necessary and sufficient conditions for the Cohen-Macaulayness of $T$. If $I_1,\dotsc ,I_r\subset A$ are ideals of positive height, we can then compare the Cohen-Macaulay property of the multi-Rees algebra $R_A(I_1,\dotsc ,I_r)$ with the Cohen-Macaulay property of the usual Rees algebra $R_A(I_1\cdots I_r)$. We also obtain a bound for the joint reduction numbers of two $\mathfrak {m}$-primary ideals in the case the corresponding multi-Rees algebra is Cohen-Macaulay.References
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Shiro Goto and Keiichi Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (1978), no. 2, 179–213. MR 494707, DOI 10.2969/jmsj/03020179
- Shiro Goto and Keiichi Watanabe, On graded rings. II. ($\textbf {Z}^{n}$-graded rings), Tokyo J. Math. 1 (1978), no. 2, 237–261. MR 519194, DOI 10.3836/tjm/1270216496
- A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960), 228 (French). MR 217083
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093, DOI 10.1007/BFb0080482
- Manfred Herrmann, Eero Hyry, and Jürgen Ribbe, On the Cohen-Macaulay and Gorenstein properties of multigraded Rees algebras, Manuscripta Math. 79 (1993), no. 3-4, 343–377. MR 1223028, DOI 10.1007/BF02568351
- Manfred Herrmann, Eero Hyry, and Jürgen Ribbe, On multi-Rees algebras, Math. Ann. 301 (1995), no. 2, 249–279. With an appendix by Ngô Viêt Trung. MR 1314587, DOI 10.1007/BF01446629
- Manfred Herrmann, Eero Hyry, Jürgen Ribbe, and Zhongming Tang, Reduction numbers and multiplicities of multigraded structures, J. Algebra 197 (1997), no. 2, 311–341. MR 1483767, DOI 10.1006/jabr.1997.7128
- M. Herrmann, S. Ikeda, and U. Orbanz, Equimultiplicity and blowing up, Springer-Verlag, Berlin, 1988. An algebraic study; With an appendix by B. Moonen. MR 954831, DOI 10.1007/978-3-642-61349-4
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- D. Kirby and D. Rees, Multiplicities in graded rings. I. The general theory, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 209–267. MR 1266185, DOI 10.1090/conm/159/01510
- Steven Kleiman and Anders Thorup, A geometric theory of the Buchsbaum-Rim multiplicity, J. Algebra 167 (1994), no. 1, 168–231. MR 1282823, DOI 10.1006/jabr.1994.1182
- Joseph Lipman, Desingularization of two-dimensional schemes, Ann. of Math. (2) 107 (1978), no. 1, 151–207. MR 491722, DOI 10.2307/1971141
- Joseph Lipman, Cohen-Macaulayness in graded algebras, Math. Res. Lett. 1 (1994), no. 2, 149–157. MR 1266753, DOI 10.4310/MRL.1994.v1.n2.a2
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Liam O’Carroll, On two theorems concerning reductions in local rings, J. Math. Kyoto Univ. 27 (1987), no. 1, 61–67. MR 878490, DOI 10.1215/kjm/1250520764
- D. Rees, Generalizations of reductions and mixed multiplicities, J. London Math. Soc. (2) 29 (1984), no. 3, 397–414. MR 754926, DOI 10.1112/jlms/s2-29.3.397
- Peter Schenzel, Ngô Viêt Trung, and Nguyễn Tụ’ Cu’ò’ng, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57–73 (German). MR 517641, DOI 10.1002/mana.19780850106
- A. Simis, The diagonal subalgebra of a multigraded $k$-algebra, in Commutative Algebra: extended abstracts of an international conference, July 27–August 1, 1994, Vechta, Germany (ed. by Winfried Bruns), Vechtaer Universitätsschriften 13, Runge, Cloppenburg, 1994.
- Ngô Việt Trung, Reduction exponent and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc. 101 (1987), no. 2, 229–236. MR 902533, DOI 10.1090/S0002-9939-1987-0902533-1
- Ngô Việt Trung and Shin Ikeda, When is the Rees algebra Cohen-Macaulay?, Comm. Algebra 17 (1989), no. 12, 2893–2922. MR 1030601, DOI 10.1080/00927878908823885
- Paolo Valabrega and Giuseppe Valla, Form rings and regular sequences, Nagoya Math. J. 72 (1978), 93–101. MR 514892, DOI 10.1017/S0027763000018225
- Wolmer V. Vasconcelos, Arithmetic of blowup algebras, London Mathematical Society Lecture Note Series, vol. 195, Cambridge University Press, Cambridge, 1994. MR 1275840, DOI 10.1017/CBO9780511574726
- J. K. Verma, Joint reductions of complete ideals, Nagoya Math. J. 118 (1990), 155–163. MR 1060707, DOI 10.1017/S0027763000003044
- J. K. Verma, Joint reductions and Rees algebras, Math. Proc. Cambridge Philos. Soc. 109 (1991), no. 2, 335–342. MR 1085400, DOI 10.1017/S0305004100069796
- J. K. Verma, Multigraded Rees algebras and mixed multiplicities, J. Pure Appl. Algebra 77 (1992), no. 2, 219–228. MR 1149023, DOI 10.1016/0022-4049(92)90087-V
Bibliographic Information
- Eero Hyry
- Affiliation: National Defence College, Santahamina, FIN-00860 Helsinki, Finland
- Email: eero.hyry@helsinki.fi
- Received by editor(s): June 1, 1996
- Published electronically: February 23, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 2213-2232
- MSC (1991): Primary 13A30; Secondary 14B15, 14M05
- DOI: https://doi.org/10.1090/S0002-9947-99-02143-1
- MathSciNet review: 1467469