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EMBEDDINGS OF OPEN MANIFOLDS

NANCY CARDIM

Abstract. Let TOP (M) be the simplicial group of homeomorphisms of M .
The following theorems are proved.

Theorem A. Let M be a topological manifold of dim ≥ 5 with a finite
number of tame ends εi, 1 ≤ i ≤ k. Let TOP ep(M) be the simplicial group of
end preserving homeomorphisms of M . Let Wi be a periodic neighborhood of
each end in M , and let pi : Wi → R be manifold approximate fibrations. Then
there exists a map f : TOP ep(M) → ∏

i TOP ep(Wi) such that the homotopy
fiber of f is equivalent to TOPcs(M), the simplicial group of homeomorphisms
of M which have compact support.

Theorem B. Let M be a compact topological manifold of dim ≥ 5, with
connected boundary ∂M , and denote the interior of M by Int M . Let f :
TOP (M) → TOP (Int M) be the restriction map and let G be the homotopy
fiber of f over idInt M . Then πi G is isomorphic to πi C(∂M) for i > 0,
where C(∂M) is the concordance space of ∂M .

Theorem C. Let q0 : W → R be a manifold approximate fibration with

dim W ≥ 5. Then there exist maps α : πi TOP ep(W ) → πi TOP (Ŵ ) and

β : πi TOP (Ŵ ) → πi TOP ep(W ) for i > 1, such that β ◦ α ' id, where Ŵ is

a compact and connected manifold and W is the infinite cyclic cover of Ŵ .

0. Introduction

In this paper we study the homotopy type of the simplicial group of homeomor-
phisms of an open manifold of dimension ≥ 5 into itself. There has been extensive
research about the homotopy type of TOP (M), for a compact topological manifold
M . For example, see [4], [9], [38] and the survey papers [10], [11] and [19]. But, if
M is a noncompact manifold, very little about this simplicial group is known.

Let M be a topological manifold of dim ≥ 5 with a finite number of tame ends εi,
1 ≤ i ≤ k. Each end εi of M has a neighborhood Wi which is a finitely dominated
infinite cyclic cover of a compact and connected manifold. Hughes and Ranicki
showed in [13] that for each Wi, there exists a manifold approximate fibration over
R, pi : Wi → R. The neighborhood Wi is called a periodic neighborhood of M .

Denote by TOP ep(M) the simplicial group of end preserving homeomorphisms
of M . Let TOPcs(M) be the simplicial group of homeomorphisms of M which have
compact support. Then TOP ep(M) ⊂ TOP (M) and TOPcs(M) ⊂ TOP ep(M).

With those notations, the main result of Section 2 is
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2354 NANCY CARDIM

Theorem A. There exists a map f : TOP ep(M)→∏
i TOP

ep(Wi) such that the
homotopy fiber of f is equivalent to TOPcs(M).

Hughes’ Approximate Isotopy Covering Theorem – Relative Version, and Sieben-
mann’s Recognition Criterion for I–regular neighborhoods have an important role
in the proof of this result.

Let GEεi(N (εi),M), 1 ≤ i ≤ k, be the simplicial set of equivalence classes of
germs of embeddings of a neighborhood of εi into M which send εi into itself.

The proof of Theorem A is given in two steps. In the first step we show that the
map TOP ep(M)→ ∏

i GEεi(N (εi),M) is a fibration with fiber TOPcs(M), using
Siebenmann’s Isotopy Extension Theorem.

In the second step we show that
∏

i TOP ep(Wi) →
∏

i GEεi(N (εi),M) is a
homotopy equivalence. This homotopy equivalence is a generalization of the
Kister–Mazur Theorem: TOP (Rn ; 0) ' GE0(N (0),Rn). A new proof of this
theorem is given in Section 2, Corollary 2.6.

As an application of Theorem A, a new proof of a theorem of Anderson, Hsiang
and Hatcher [3] is given in Section 2, Theorem 2.9.

Kuiper and Lashof in [23] proved a theorem where they express TOP (Rn) in
terms of TOP (Dn) and the concordance space for Sn−1, C(Sn−1), i.e.

Kuiper–Lashof Theorem. C(Sn−1) → TOP (Dn) → TOP (Rn) is a homotopy
fibration sequence.

In this work, the Kuiper–Lashof Theorem is generalized: Dn is replaced by any
compact manifold M and Rn by the interior of M . That is the main result of
Section 3.

Theorem B. Let M be a compact topological manifold of dim ≥ 5, with connected
boundary ∂M , and denote the interior of M by Int M . Let f : TOP (M) →
TOP (Int M) be the restriction map and let G be the homotopy fiber of f over
idInt M . Then, πi G is isomorphic to πi C(∂M) for i > 0, where C(∂M) is the
concordance space of ∂M .

Siebenmann’s Isotopy Extension Theorem for CS sets [34] has an important role
in the proof of this result.

The map f in Theorem B is not necessarily a fibration, and an example is
given of a self–homeomorphism ρ of Int M which is not the restriction of a self–
homeomorphism of M but ρ is isotopic to the identity map.

Finally, in Section 4 we prove

Theorem C. Let q0 : W → R be a manifold approximate fibration with dim W ≥
5. Then

1. there exists a manifold approximate fibration q : Ŵ → S1 such that the fol-
lowing diagram commutes :

W
q0−−−−→ Ry yexp

Ŵ −−−−→
q

S1

2. πn TOP ep(W ) is a direct summand of πn TOP (Ŵ ) for n >1, where Ŵ is a
compact and connected manifold and W is the infinite cyclic cover of Ŵ .
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The proof of this theorem uses results of Sections 2 and 3.
I would like to thank my advisor, Professor Bruce Williams, for suggesting this

work and for his guidance, patience and generous help. My thanks to Bruce Hughes,
Steve Ferry, Douglas Anderson, Stratos Prassidis and Mário O. da Silva for their
suggestions and useful conversations during the preparation of this paper. Also, I
want to thank Larry Taylor, Frank Connolly and Bill Dwyer for making comments
for the improvement of this paper.

1. Preliminaires

In this section, we establish definitions, results and some properties of the objects
that will be used below.

The following definition and examples may be found in Siebenmann [34].

Definition 1.1. A stratified set X , in Siebenmann’s sense, is a metrizable space X
with a filtration ∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xk−1 ⊂ Xk ⊂ · · · ⊂ X by closed subsets
Xk, k ≥ −1, such that for each k ≥ 0, the components of Xk −Xk−1 are open in
Xk −Xk−1.

It is a top stratified set if Xk−Xk−1 is a topological k-manifold without bound-
ary, called the k-stratum of X .

A stratified set X is locally cone–like if for each x ∈ X , say x ∈ Xk−Xk−1, there
is an open neighborhood U of x in Xk − Xk−1, a compact stratified set of finite
dimension L (called a link of x in X) and a stratum-preserving homeomorphism of
U × cL onto an open neighborhood of x in X . (cL is the open cone in L. Regard
U as a stratified set with U = Uk − Uk−1.)

A CS set is a locally cone–like top stratified set.

Example 1. A topological m-manifold X is a CS set. Here Xk = X for k ≥ m,
Xm−1 = ∂X , and X i = ∅ for i ≤ m− 2.

Example 2. Let M be a compact topological manifold with connected boundary
∂M . The topological space X = Int M ∪ {∞}, the one-point compactification of
Int M , is a CS set. The space Y = ∂M ∗ S0, where ∂M ∗ S0 denotes the join of
∂M and S0, is a CS set.

A mock open cone is a locally compact metric space C with a homotopy γt :
C → C, with 0 ≤ t ≤ 1, such that

1. γt, 0 ≤ t < 1, is an isotopy of idC , through homeomorphisms,
2. γ0 = id|C , γ1(C) = v ∈ C and γt(v) = v, ∀t.
A topological stratified set X is a locally weakly cone–like set (WCS) if for each

x ∈ Xk−Xk−1, there is a mock open cone C with vertex v and a homeomorphism
θ : Rk×C → U , where U is an open neighborhood of x in X , such that θ−1(Xk) =
Rk × v.
Example 3. Open cones on compact sets are trivial examples of mock open cones.

Example 4. Let W be a connected topological manifold of dim ≥ 5. Assume W
is proper homotopy equivalent to (or even properly dominated by) F × R, with F
a finite connected CW complex. Assume e+ is one of the two end points of W .
Then C = W ∪ e+ is a non-trivial example of a mock open cone. A homotopy γt

of W ∪ e+ to e+ can be constructed by an engulfing argument such that (1) and
(2) hold and, for each t, γt fixes points outside some compact set in W (depending
this time on t). See [34, §5].
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2356 NANCY CARDIM

Let M be a manifold and U be an open subset of M . If K is a subset of
M with K ⊂ U , let Emb(U,M ;K) denote the space of proper embeddings of U
into M which are the identity on K, and let Emb(U,M) denote Emb(U,M ; ∅). A
neighborhood of h ∈ Emb(U,M ;K) is of the form

N(h) = {g ∈ Emb(U,M ;K)/d(g(x), h(x)) < ε, ∀x ∈ C},
where C is a compact subset of U , ε > 0 and d is the metric on M .

Theorem 1.2 (Deformation Theorem). Let X be a Hausdorff, locally compact, lo-
cally connected topological space (CS set or WCS set), K ⊂ X be a compact set
and V ⊂ X be an open neighborhood of K. If h : V → X is an open embedding
sufficiently near to the inclusion i : V ↪→ X in Emb(V,X), then there exists an
isotopy ht, 0 ≤ t ≤ 1, of h through open embeddings ht : V → X such that h1 = i
on K and ht = h outside some compact set in V (independent of t and even of
h). Furthermore, the isotopy is standard in the sense that it is constructed to be a
continuous function on h as h varies sufficiently near i. See [34], and for sufficiently
near see [7].

Note. Let A be a subset of a topological space X and x ∈ X . A is a neighborhood
of x if A contains an open set containing x.

Lemma 1.3. Let X be a Hausdorff, locally compact, locally connected topological
space; let K and U be subsets of X such that U is an open neighborhood of the
compact set K. Then K has a compact neighborhood C in X such that C ⊂ U .

Proof. Since X is locally compact, x ∈ K contains a compact neighborhood Cx

such that Cx ⊂ U . Thus, for each x ∈ K the collection A = {
◦
Cx}x∈K is an

open cover of K. And since K is compact, this implies that there exists a finite

subcollection {
◦
Cx1 ,

◦
Cx2 , . . . ,

◦
Cxn} that also covers K. Thus, let C =

n⋃
i=1

Cxi be the

compact neighborhood of K in X and C ⊂ U (since each Cxi ⊂ U).

Theorem 1.4 (Siebenmann’s Isotopy Extension Theorem to (X,K)). Let X be a
Hausdorff, locally compact, locally connected topological space (CS set or WCS set);
let K and V be subsets of X such that V is an open neighborhood of the compact
set K, and such that K has a compact frontier in V . Let ft : V → X, t ∈ In, be a
continuous family of embeddings, and let ft(K) be closed. Assume that ft respects
strata. Then there exists a continuous family of homeomorphisms Ft : X → X,
t ∈ In, fixed outside some compact set, such that Ft0 = id, Ft|K = ft, ∀t ∈ In

and Ft respects strata. See [34, Theorem 6.5].

Remark 1. By Lemma 1.3, the isotopy Ft in Siebenmann’s Isotopy Extension The-
orem above can be chosen such that Ft = ft in some compact neighborhood C of
K in X .

This theorem implies

Theorem 1.5. With the same notation as in Theorem 1.4, the restriction map
TOP (X)→ GE(N (K), X) is a (Kan) fibration.

Here GE(N (K), X) denotes the simplicial set of embeddings f : U×∆k → X×∆k

commuting with the projection on ∆k, where U is an open neighborhood of K
and two such embeddings f and f

′
: U

′ × ∆k → X × ∆k are identified if they
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EMBEDDINGS OF OPEN MANIFOLDS 2357

agree in a smaller neighborhood of K. Let TOP (X) denote the simplicial set of
homeomorphisms of X . See [5], [24].

Proof. In fact,

∆k × {0} β−−−−→ TOP (X)y yr

∆k × I −−−−→
α

GE(N (K), X)

Let α be a (k+1)–simplex of GE(N (K), X) given by an embedding q : U×∆k×
I → X ×∆k × I, where ∆k+1 is identified with ∆k × I and U is a neighborhood
of K in X . Let C ⊂ U be a compact neighborhood of K given by Lemma 1.3.
Suppose we are given a lift of the 0–level of α to a k–simplex β of TOP (X). Thus
β is given by the homeomorphism p : X × ∆k → X × ∆k such that p = q on
C×∆k. Let i : U ×∆k ↪→ X×∆k be the inclusion map. Consider the composition
U ×∆k × I q−→ U ×∆k × I i×idI−−−→ X ×∆k × I, which is a family of embeddings.

From Theorem 1.4 applied to (X,C), there exists an isotopy of homeomorphisms
f : X×∆k×I → X×∆k×I such that f = q on C×∆k×I and f |X×∆k = p. Thus
this describes a (k + 1)–simplex of TOP (X) which is the required lift of α.

Lemma 1.6. Let X and Y be connected Kan simplicial sets with base points x
and y respectively. Let f : X → Y be a base point preserving map. If E(f), the
homotopy fiber of f over y, is contractible then f is a homotopy equivalence. For
the definition of E(f) see [25].

Lemma 1.7. Let

A
f−−−−→ C

g

y yg′

B −−−−→
f ′

D

be a commutative diagram of connected based Kan simplicial sets. Then the data
determines simplicial maps α and β between the homotopy fibers, α : E(f)→ E(f ′)
and β : E(g) → E(g′) . Thus, E(α), the homotopy fiber of α, is weak homotopy
equivalent to the homotopy fiber E(β) of β.

Remark 2. See Adams [1] for the proof of the analogous result for topological spaces.

We refer to Siebenmann’s thesis [30] for definition and basic results on ends
and tame ends. An end of a manifold is tame if it has a sequence of connected
neighborhoods satisfying certain properties. The ends of the interior of a compact
manifold are examples of tame ends.

Manifolds with tame ends arise in Siebenmann [31], [33] as finitely dominated
infinite cyclic covers of compact manifolds.

Let X be a compact space and f : X → S1 be a continuous map. Let Y be an
infinite cyclic cover of X induced by f from exp : R → S1. Then, there exist a
proper map p : Y → R and a generating covering translation T : Y → Y such that
pT (y) = p(y) + 1, ∀y ∈ Y . See [14] and [33].
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2358 NANCY CARDIM

Definition 1.8. A neighborhood V of an end ε of M is a periodic neighborhood if
V is homeomorphic to a finitely dominated infinite cyclic cover of a connected and
compact manifold.

Remark 3. Tame ends of an open manifold of dimension ≥ 5 have periodic neigh-
borhoods. See Siebenmann [31]. This is a special case of the Main Theorem in [18]
(see page 1 and let B = point). See also [8].

We now recall some definitions on manifold approximate fibrations. See [14].

Definition 1.9. LetX and B be topological spaces. Given ε > 0, a map p : X → B
is an ε–fibration if for any space Z and maps f : Z → X , F : Z × I → B such
that F (z, 0) = pf(z) for z ∈ Z, there exists a map F̃ : Z × I → X such that
F̃ (z, 0) = f(z) and pF̃ is ε-close to F .

An approximate fibration is a map p : X → B which is an ε–fibration for every
ε > 0.

A manifold approximate fibration is a proper map p : X → B which is an
approximate fibration and such that X is a finite dimensional manifold without
boundary.

The map p in the definition of an approximate fibration is not necessarily onto.
But if p : X → B is an approximate fibration then the image of p in any path
component of B is either empty or dense. In particular, the standard inclusion
(0, 1) ↪→ [0, 1] is an approximate fibration. If p is a closed map then the image of p
is closed and hence is either empty or all of a particular path component.

Let p : X → R be a manifold approximate fibration.
Recall from [14] that a k–simplex of the simplicial group TOP c

(
X

p→ R
)

of
controlled homeomorphisms of X is a homeomorphism h : X × ∆k × [0, 1) →
X ×∆k × [0, 1) such that h commutes with the projection on ∆k × [0, 1) and the
compositions

X ×∆k × [0, 1) h→ X ×∆k × [0, 1)
p×id−→ R×∆k × [0, 1)

and

X ×∆k × [0, 1) h−1→ X ×∆k × [0, 1)
p×id−→ R×∆k × [0, 1)

extend continuously to maps

X ×∆k × [0, 1]→ R×∆k × [0, 1]

via p× id : X ×∆k × [0, 1]→ R×∆k × [0, 1].
Recall from [16] that a k–simplex of the simplicial group TOP b

(
X

p→ R
)

of
bounded homeomorphisms ofX consists of a homeomorphism h : X×∆k → X×∆k

commuting with the projection on ∆k × [0, 1), and such that h is bounded in the
R–direction. Note that a map f : X → Y between two topological spaces is called
bounded if there exists a number c > 0, which depends on f , such that for each
x ∈ X , ‖ p2f(x)− p1(x) ‖< c, where p1 : X → R and p2 : Y → R.

Remark 4. Hughes and Ranicki in [13, Lemma 7.7] showed that a topological man-
ifold M of dimension ≥ 5 admits an approximate fibration to R if and only if M is
a finitely dominated infinite cyclic cover of a compact space.

Theorem 1.10. Let W be a connected manifold of dim ≥ 5 and let p : W → R be a
manifold approximate fibration. Then the following simplicial groups are homotopy
equivalent:
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EMBEDDINGS OF OPEN MANIFOLDS 2359

1. TOP ep(W ),
2. TOP b

(
W

p→ R
)
,

3. TOP c
(
W

p→ R
)
,

where TOP ep(W ) denotes the simplicial group of end preserving homeomorphisms
of W . See [16].

Theorem 1.11. (Hughes’Approximate Isotopy Covering Theorem – Relative
Version). Let p : M → B be a manifold approximate fibration with dim M ≥5, and
let B be a metric space. Let C and C̃ be closed subsets of B such that C ⊂ int C̃,
let α be an open cover of B and let ht : B → B be an isotopy which is supported on
C. Then there exists an isotopy Ht : M →M , 0 ≤ t ≤ 1, such that pHt is α–close
to htp, for each t, and Ht is supported on p−1(C̃).

Proof. In [16, Theorem 6.1] the case where C = ∅ is deduced from the Approxima-
tion Theorem in [12]. The proof of the relative version is the same except one uses
a Relative Approximation Theorem.

We refer to Siebenmann [35] for definitions on I–regular neighborhoods. We
summarize the basic results of I–regular neighborhoods. The proofs are essentially
in [35], [36], [37].

Let Y be a topological space and X be any subset of Y .

I–Compression Axiom. (Y,X) satisfies I–compression axiom if for any neigh-
borhood U of X in Y there exists a neighborhood V ⊂ U so that V is I–compressible
towards X in U .

Remark 5. Under the hypothesis of the I–compression axiom, every regular neigh-
borhood of X in Y is an I–regular neighborhood. See [36, Remark 1.7].

Theorem 1.12 (Uniqueness of I–regular neighborhoods). If E and E
′
are two I–

regular neighborhoods of X in Y , then there exists an isotopy of embeddings gt :
E → Y , 0 ≤ t ≤ 1, fixing a neighborhood of X in Y (independent of t) and such
that g0 = ı, where ı : E ↪→ Y is the inclusion and g1(E) = E

′
. See [35, Theorem

1.4] or [36, Theorem 2.2].

Theorem 1.13 (Recognition Criterion). Suppose Y is locally compact and X ⊂ Y
is compact. Then an open neighborhood U of X in Y is I–regular if and only if U is
σ–compact, and for each compact set K ⊂ U there exists a compact set L ⊂ U such
that K is I–compressible towards X in L. See [35, Theorem 3.1] or [36, Theorem
4.1].

Remark 6. Siebenmann in [34, page 254] says that if (Y,X) is compact and metriz-
able, an open neighborhood U of X is regular if and only if K is compressible
towards X in U for each compact set K ⊂ U .

Theorem 1.14. Let W be a topological manifold of dim ≥5, let ε be an isolated
end of W and let W ∪ ε be the one-point compactification of W . Suppose that ε
admits I–regular neighborhoods in (∂W ) ∪ ε. If ε is tame then ε admits I–regular
neighborhoods in W ∪ ε. See [37, §2].

Remark 7. In the theorem above, if some neighborhood U of ε is such that (∂W )∩
U = ∅, in particular if ∂W = ∅, then trivially ε admits I–regular neighborhoods in
(∂W ) ∪ ε.
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Remark 8. In Theorem 2.7 we will prove that W ∪e+ is an I–regular neighborhood,
for W a total space of a manifold approximate fibration over R.

2. Manifolds with tame ends

Let M be a non-compact, separable topological manifold of dimension ≥ 5,
with compact (possibly empty) boundary ∂M , and let M have a finite number of
ends ε1, ε2, . . . , εk, each one tame. By Remark 3 and Remark 4, for each end εi

of M , choose a periodic neighborhood Wi and a manifold approximate fibration
pi : Wi → R.

Let TOP (M) denote the simplicial group of homeomorphisms of M , where a
k-simplex is a homeomorphism h : M × ∆k → M × ∆k commuting with the
projection on ∆k. Let TOP ep(M) denote the simplicial subgroup of TOP (M) of
homeomorphisms of M which preserve all the ends of M . Notice that TOP ep(M)
is the union of certain components of TOP (M).

Let TOPcs(M) be the simplicial subgroup of TOP ep(M) of homeomorphisms of
M with compact support.

Let X be a topological space, K ⊂ X a compact set. Let GEK(N (K), X) be the
simplicial set of equivalence classes of germs of embeddings whose k-simplices are
represented by embeddings h : U ×∆k → X ×∆k commuting with the projection
on ∆k, for some open neighborhood U of K in X and such that h(K) = K. Two
such embeddings hi : Ui ×∆k → X ×∆k, i = 1, 2, are equivalent if they agree on
U3 ×∆k, where U3 ⊂ U1 ∩ U2.

Let A ⊂ X . Let TOP (X rel A) denote the simplicial group whose k-simplices
are homeomorphisms h : X ×∆k → X ×∆k commuting with the projection on ∆k

and which restrict to the identity on A.

Theorem A. There exists a map f : TOP ep(M)→∏
i TOP

ep(Wi) such that the
homotopy fiber of f is equivalent to TOPcs(M) ⊂ TOP ep(M).

Henceforth we shall assume that M has just one tame end ε, with a periodic
neighborhood W and a manifold approximate fibration p : W → R. Denote by e+
and e− the two ends of W . The general case follows easily.

The main result follows from the analysis of the diagram

G −−−−→ TOP ep(M)
f−−−−→ TOP ep(W )x ∥∥∥ g

x
TOPcs(M) −−−−→ TOP ep(M) ς−−−−→ GEε(N (ε),M)

where the following will be proved:
1. The restriction map ς is a fibration with fiber TOPcs(M).
2. The map g is a homotopy equivalence.
In this diagram G denotes the homotopy fiber of f and GEε(N (ε),M) denotes

the simplicial set of equivalence classes of germs of embeddings of a neighborhood
of ε into M which send ε into itself.

The proof of (1) is given in Theorem 2.1.
In order to prove (2) we construct, in Theorem 2.5, a homotopy equivalence

δ : TOP ep(W )→ GEε(N (ε),M). Then let g be a homotopy inverse to δ.
From Theorem 1.10 we have that TOP ep(W ) is homotopy equivalent to

TOP c
(
W

p→R
)
.
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Proof of Theorem A. Assuming (1) and (2) above, it follows that G is homotopy
equivalent to TOPcs(M) in the diagram above, where f is the composition map
f = gς .

LetW ↪→M be a periodic neighborhood of ε. Let TOPW (M) ⊂ TOP (M) be the
subsimplicial group of homeomorphisms of M which restrict to a homeomorphism
of W .

Corollary A1. (i) BTOPW (M)→ BTOP (M) is a homotopy equivalence.
(ii) BTOPW (M)→ BTOP ep(W ) is a fibration.

Theorem 2.1. The restriction map ς : TOP ep(M)→ GEε(N (ε),M) is a fibration.

Proof. This follows by applying Theorem 1.5 to X = M ∪ ε and K = ε. Notice
that Example 4 (Section 1) of a mock open cone implies that M ∪ ε is a WCS set.

The fiber of ς over the standard embedding is TOPcs(M).

Proposition 2.2. Let X be a topological space, K ⊂ X a compact set, and let V
be an open neighborhood of K in X. Then the inclusion V ⊂ X induces a map
φ : GEK(N (K), V )→ GEK(N (K), X) which is a homotopy equivalence.

Proof. Let h : U → V be a representative of the class [h] in GEK(N (K), V ), where
U is a neighborhood of K in V . Then i ◦ h : U → V is an embedding such that
i ◦ h(K) = K, where i is the inclusion map. Thus define φ : GEK(N (K), V ) →
GEK(N (K), X) by φ[h] = [i ◦ h].

Conversely, let g : U ′ → X be an embedding representative of the class [g] in
GEK(N (K), X), where U ′ is a neighborhood of K in X such that g(K) = K. Since
V ⊂ X and g(K) = K, g−1(V ) ⊃ K is an open set. Let L be a neighborhood of K
such that L ⊂ g−1(V ). Denote g′ = g|L. Then ḡ : L → V such that ḡ(y) = g′(y)
for y ∈ L is an embedding in GEK(N (K), V ). Thus define ψ : GEK(N (K), X) →
GEK(N (K), V ) by ψ[g] = [ḡ].

We have φ ◦ ψ = idGEK(N (K),X) and ψ ◦ φ = idGEK(N (K),V ).

Corollary 2.3. The map φ : GEe+(N (e+),W ) → GEε(N (ε),M) is a homotopy
equivalence.

Proof. This follows from Proposition 2.2, where K = e+ which is also the end of
M , V = W and X = M .

Proposition 2.4. The restriction map η : TOP ep(W ) → GEe+(N (e+),W ) is a
homotopy equivalence.

Proof. This is implied by the following claims.

Claim 1. η is a fibration.

Proof. This follows from Theorem 2.1 with M = W .
The fiber of η over the standard embedding is TOP (W rel N (e+)).

Claim 2. TOP (W rel N (e+)) ' ∗.
Proof. Let p : W → R be a manifold approximate fibration and Wk = p−1(k,+∞)
be a neighborhood of e+ in W . Let h : W → W be a homeomorphism such that
h|Wk

= id.
Consider a homeomorphism g : R → R such that g|(k,+∞) = id, where (k,+∞)

is a neighborhood +∞ of in R.
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An isotopy of g to the identity, fixing (k,+∞), is given by gs : R→ R, 0 ≤ s ≤ 1:

gs(t) =

{
g(t+ s

1−s)− s
1−s if 0 ≤ s < 1,

id if s = 1.

gs is continuous near 1: given t ∈ R, choose s close enough to 1 so that t+ s
1−s >

k. Then g(t+ s
1−s) = t+ s

1−s . Thus, gs(t) = t+ s
1−s − s

1−s = t.
By Theorem 1.11 there exists a continuous family of homeomorphismsGs : W →

W , 0 ≤ s ≤ 1, such that G1 = id and (p× idI)Gs is close to gs(p × idI). Gs is an
isotopy of h and the identity, fixing a neighborhood of e+ contained in Wk.

Claim 3. η is onto on π0.

Proof. Let N be a neighborhood of e+ in W such that N is also a total space of a
manifold approximate fibration q : N → R. Applying Corollary 2.8, there exists an
isotopy of embeddings ht : N →W , 0 ≤ t ≤ 1, such that h0 = inclusion ı : N ↪→W ,
h1 = homeomorphism, and there exists a smaller neighborhood V of e+ in W such
that ht|V = ı|V for all t. Let f : N →W such that f(e+) = e+ be an embedding in
GEe+(N (e+),W ). Applying Corollary 2.8 again to f(N) ⊂ W , we get an isotopy
of embeddings gt : f(N) → W such that g0 = inclusion ı : f(N) ↪→ W , g1 =
homeomorphism, and there exists a smaller neighborhood V ′ of e+ in f(N) such
that gt|V ′ = g0|V ′ .

Define an isotopy of embeddings st : N →W , 0 ≤ t ≤ 1, by the composition st =
fgt so that s0 = f , s1 = homeomorphism, and there exists a smaller neighborhood
V ′′ of e+ such that st|V ′′ = f |V ′′ .

Define F : W → W by F = s1(g1)−1. Then F is a homeomorphism such that
F |V ∩f−1(V ′) = f |V ∩f−1(V ′), i.e., F is a homeomorphism which is germ equivalent
to f at e+.

Claim 4. Any two fibers of η are isomorphic.

Proof. Let F0 = TOP (W rel N (e+)) be the fiber of η over the standard embedding
i : N (e+) → W . In particular, idW ∈ F0. Let g ∈ GEe+(N (e+),W ) and let F be
the fiber of η over g, i.e., the simplicial group of a homeomorphism h of W into
itself such that h|N (e+) = g. Construct an isomorphism H : F0 → F as follows.
Let h be an element in F . Define H : F0 → F by H(f) = h ◦ f , with f ∈ F0. Since
f |N (e+) = id|N (e+), we have that h ◦ f |N (e+) = h|N (e+). Thus, H(f) = h ◦ f is in
F , i.e. η(h) = η(h ◦ f).

Define the inverse of H , H−1 : F → F0, by H−1(g) = h−1 ◦ g. It is well defined
because h is a homeomorphism.

Clearly H−1 ◦H = idF0 and H ◦H−1 = idF .

Theorem 2.5. The map δ : TOP ep(W ) → GEε(N (ε),M) is a homotopy equiva-
lence.

Proof. This follows from Corollary 2.3 and Proposition 2.4, where δ = φ ◦ η.
As a corollary we have

Corollary 2.6 (Kister - Mazur Theorem). The restriction map TOP (Rn; 0) →
GE0(N (0),Rn) is a homotopy equivalence, where TOP (Rn; 0) denotes the simplicial
group of homeomorphisms of Rn which fixes the origin.

Proof. In this proof we will use the following claims:
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Claim 1. TOP ep(Sn−1 × R) ∼= TOP (Rn; 0).

Proof. Let h : (Rn − 0)→ Sn−1 × R be a homeomorphism.
Given a homeomorphism f : Rn → Rn such that f(0) = 0, define f̄ : Sn−1 ×

R → Sn−1 × R by f̄ = h ◦ f ◦ h−1, which is an end preserving homeomorphism.
Conversely, given an end preserving homeomorphism g : Sn−1 × R → Sn−1 × R,
define ḡ : Rn → Rn by

ḡ(x) =

{
h−1 ◦ g ◦ h(x) for x 6= 0,
0 or x = 0.

Since g is end preserving, ḡ is continuous in 0.

Claim 2. GE−∞(N (−∞), Sn−1 × R) ' GE0(N (0),Rn).

Proof. Analogous to Claim 1.
Then, applying Proposition 2.4, where W = Sn−1 × R and p is the projection

map, we have that TOP ep(Sn−1×R) ' GE−∞(N (−∞), Sn−1×R). And by Claim
1 and Claim 2 we have the corollary.

Theorem 2.7. Let p : W → R be a manifold approximate fibration and let
dim W ≥ 5. Then W ∪ e+ is an I-regular neighborhood of e+.

Proof. It follows from Siebenmann [33] that both of the ends e+, e− of W are
tame ends. Then, using Theorem 1.14 and Remark 7, we have that e+ (resp. e−)
admits I-regular neighborhoods in W ∪ e+ (resp. W ∪ e−), i.e. (W ∪ e+, e+) (resp.
(W ∪ e−, e−)) satisfies the I-compression axiom. Thus, since (W ∪ e+, e+) satisfies
the I-compression axiom, it follows from Remark 5 that it is enough to show that
W ∪ e+ is a regular neighborhood of e+. And to show this we apply Remark 6 to
Y = W ∪ {e+, e−}, U = W ∪ e+, together with Theorem 1.11.

Let K = p−1[k,∞) ∪ e+ be a compact set, K ⊂ W ∪ e+, and let V be a
neighborhood of e+. Choose r such that r > k and p−1[k,∞) ⊂ V .

We will apply Theorem 1.11 to C = [k − 1, r + 2], C̃ = [l + 1, r + 3], where
l + 1 < k − 1, and to the isotopy ht : R → R, 0 ≤ t ≤ 1, such that h0 = id,
h1(x) > r + 1 for x ≥ k and ht is supported on C. Thus, by Theorem 1.11 there
exists an isotopy Ht : W →W , 0 ≤ t ≤ 1, such that pHt is α-close to htp, for each
t, and Ht is supported on p−1(C̃).

Notice the sequence of real numbers 1 < l+ 1 < k− 1 < k < r < r+ 1 < r+ 2 <
r + 3.

The isotopy ht of R is defined by h0 = id and

h1(x) =


x if x > r + 2 or x < k − 1,
x(r − k + 2) + (k − 1)(k − r − 1) if k − 1 ≤ x < k,

r + 1 + x−k
r−k+2 if k ≤ x ≤ r + 2.

Since Ht is supported on p−1(C̃), H is the identity on

p−1(−∞, l+ 1) ∪ p−1(r + 3,∞),

where p−1(−∞, l+ 1) ⊃W − p−1[l,∞) and p−1(r+ 3,∞) is a neighborhood of e+.
Now we verify that H1(K) ⊂ V . Let x ∈ K. Then pH1(x) is α-close to h1(p(x)).

Since p(x) ≥ k, it follows that pH1(x) ≥ r (because h1(p(x)) ≥ r + 1 by the
construction of h1). It means that H1(x) ⊂ p−1([r,∞)) ⊂ V .
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Since Ht is fixed on a neighborhood of e+, we can extend Ht to H̄t : W ∪ e+ →
W ∪ e+ by H̄t|W = Ht and H̄t(e+) = e+. Thus, K is compressible towards e+ in
U .

Corollary 2.8. Let p : W → R be a manifold approximate fibration and suppose
that U is an open neighborhood of e+ in W such that U is also the total space
of a manifold approximate fibration q : U → R. Then there exists an isotopy of
embeddings ht : U →W , 0 ≤ t ≤ 1, such that, h0 = ı, where ı is the inclusion map
ı : U ↪→ W , h1 is a homeomorphism and ht fixes a smaller neighborhood V of e+.

Proof. This follows from Theorem 1.12, where E = U ∪ e+ and E′ = W ∪ e+ are
I-regular neighborhoods.

We now use Theorem 2.1 to give an alternative proof of Anderson and Hsiang’s
Theorem [3] as given in the next theorem.

Let N be a compact, connected manifold and let p : N×R→ R be the projection
map.

Theorem 2.9 (Anderson-Hsiang-Hatcher). Ω(TOP b(N×R)) ' TOP (N×I rel ∂).

Proof. Fact (*): If X is a topological space, x ∈ X is a base point, and ∆ : X →
X × X is the diagonal map, then the homotopy fiber of ∆ at (x, x) is homotopy
equivalent to Ω(X, x).

This fact will be used in the proof of this theorem.
From Theorem 2.1 applied to M = N × R we have that the restriction maps

µ+ : TOep(N × R)→ GE+∞(N (+∞), N × R)

and

µ− : TOP ep(N × R)→ GE−∞(N (−∞), N × R)

are fibrations. The homotopy fiber of the map

Φ : TOP ep(N × R)→ GE+∞(N (+∞), N × R)× GE−∞(N (−∞), N × R)

is

TOP (N×R rel {N (+∞),N (−∞)})
which is homotopy equivalent to TOP (N×I rel ∂).

So, we construct the following diagram:

TOP b(N × R)
Ψ //

'i

��

GE+∞(N (+∞), N × R)× GE−∞(N (−∞), N × R)

��

TOPcs(N × R) // TOP ep(N × R)
Φ // GE+∞(N (+∞), N × R)× GE−∞(N (−∞), N × R)

where Ψ is the composition Ψ = Φ◦ i with i a homotopy equivalence. See Theorem
1.10.

Then, the homotopy fiber of the map Ψ is equivalent to the fiber of Φ , which
is homotopy equivalent to TOP (N × I rel ∂). Finally, by fact (*), the homotopy
fiber of Φ at (incl, incl) is equivalent to Ω(TOP b(N × R)). In other words,
TOP (N × I rel ∂) is homotopy equivalent to Ω(TOP b(N × R)).
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3. Manifolds which are the interior of a compact manifold

In this section, a generalization of the Kuiper–Lashof Theorem is given for a
non-compact manifold which is the interior of a compact manifold with connected
boundary.

Through this section all embeddings are proper.
Let M be a compact topological manifold of dimension ≥ 5, with connected

boundary ∂M , and denote the interior of M by Int M .
Let C(∂M) denote the space of concordances of ∂M .
Let f : TOP (M) → TOP (Int M) be the restriction map, and let G be the

homotopy fiber of f over idInt M .

Theorem B. πi G is isomorphic to πi C(∂M), for i > 0.

This result follows from the of the diagram

G //

��

Hoo

��

C(∂M)

��

TOP (M rel N (∂M)) //

i

��

TOP (M)
r //

f

��

GE∂M (N (∂M), M)

u

��

TOP (∂M)
voo

g

��

TOP (Int M rel ∞) // TOP (Int M)
s // GE∞(N (∞), Int M)

j
// TOP b(∂M × R)

(∗∗)

where the following will be proved:
(1) the restriction maps r and s are fibrations, with fibers TOP (M rel N (∂M))

and TOP (Int M rel ∞);
(2) the maps j and v are homotopy equivalences;
(3) the diagrams (I)

TOP (M) r−−−−→ GE∂M (N (∂M),M)

f

y u

y
TOP (Int M) s−−−−→ GE∞(N (∞), Int M)

and (II)

GE∂M (N (∂M),M) v←−−−− TOP (∂M)

u

y g

y
GE∞(N (∞), Int M)

j←−−−− TOP b(∂M × R)
are commutative.

The proof of (1) will be given in Theorems 3.1 and 3.2. The maps j and v will
be constructed in Theorems 3.5 and 3.10. The construction depends on the choice
of a collar for ∂M . In Remarks 3.6 and 3.11 we have (3).

It was proved by Anderson and Hsiang [3] that C(∂M) is the homotopy fiber of
the map g = −× idIR : TOP (∂M)→ TOP b(∂M × R).

Proof of Theorem B. Let H denote the homotopy fiber of u. Assume (1) – (3)
above. Then:

1. i : TOP (M rel N (∂M))→ TOP (Int M rel ∞) is an isomorphism (Remark
3.12).

2. Lemma 1.7 applied to the square (I) implies that πi G ∼= πi H, for i > 0.
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3. Since the square (II) commutes, and j and v are homotopy equivalences, and
we get that πi H ∼= πi C(∂M), for i > 0.

Thus, πi G ∼= πi C(∂M), for i > 0.

The technique used cannot be applied for the case i = 0, because it works only
for connected sets. See Lemma 1.7 and Remark 2.

Theorem 3.1. The restriction map r : TOP (M)→ GE∂M (N (∂M),M) is a fibra-
tion.

Proof. This follows from Theorem 1.5. The fiber of r over the inclusion map is
TOP (M rel N (∂M)).

Theorem 3.2. The restriction map s : TOP (Int M)→ GE∞(N (∞), Int M) is a
fibration.

Proof. This is a special case of Theorem 2.1, where M = Int M . The fiber of s is
TOP (Int M rel ∞).

The homotopy equivalence j : TOP b(∂M × R)→ GE∞(N (∞), Int M) is based
on Lemmas 3.3 and 3.4, and on a choice of a collar for ∂M in M .

Choose a collar c : ∂M × [0, 1)→M for ∂M in M . c induces an isomorphism of
simplicial sets.

Lemma 3.3. ic : GE+∞(N (+∞), ∂M × R)→ GE∞(N (∞), Int M) is a homotopy
equivalence.

Proof. With the above choice of a collar c, this follows from Corollary 2.3 with
W = ∂M × R.

Lemma 3.4. The restriction map µ : TOP b(∂M ×R)→ GE+∞(N (+∞), ∂M ×R)
is a homotopy equivalence.

Proof. This follows from Theorem 1.10 and Proposition 2.4 for the special case
where W = ∂M × R and p : ∂M × R→ R is the projection map.

Theorem 3.5. The map j : TOP b(∂M×R)→ GE∞(N (∞), Int M) is a homotopy
equivalence.

Proof. The proof follows from Lemmas 3.3 and 3.4 as indicated in the diagram

TOP b(∂M × R)
3.4'
µ
GE+∞(N (+∞), ∂M × R)

3.3'
ic

GE∞(N (∞), Int M).

Thus j = µ ◦ ic.
Remark 3.6. The commutativity of square I follows by inspectiom since the maps
r, s, u and f are all restriction maps.

Now, with the same choice of the collar c we will construct the homotopy equiv-
alence v. This construction is based on Lemma 3.7 through Proposition 3.9. For
this, we define maps α, β, γ, v and k such that k = α ◦ γ−1 and v = γ ◦ β, as
follows.

The map γ : GE∂M (N (∂M), ∂M × [0, 1)) → GE∂M (N (∂M),M) is defined in
terms of the collar c, and it is a homotopy equivalence.

The map α : GE∂M (N (∂M), ∂M × [0, 1))→ TOP (∂M) is defined as the restric-
tion map and we will show that it is a homotopy equivalence.
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The map β : TOP (∂M) → GE∂M (N (∂M), ∂M × [0, 1)) is defined as β = − ×
id[0,1), and it is a homotopy equivalence. Thus the map k : GE∂M (N (∂M),M) →
TOP (∂M), defined as the restriction map, is a homotopy equivalence, and the
map v : TOP (∂M) → GE∂M (N (∂M),M) defined by v = γ ◦ β is a homotopy
equivalence.

Lemma 3.7. The map γ : GE∂M (N (∂M), ∂M × [0, 1))→ GE∂M (N (∂M),M) is a
homotopy equivalence.

Proof. This follows from Corollary 2.3.

Proposition 3.8. The restriction map α : GE∂M (N (∂M), ∂M×[0, 1))→TOP (∂M)
is a homotopy equivalence.

Proof. The Isotopy Extension Theorem for topological manifolds [6, Corollary 1.4]
applied here implies by Theorem 1.5 that α is a (Kan) fibration, and it is surjective.
The fiber of α over the identity map is GE(N (∂M), ∂M × [0, 1); rel ∂M), the
simplicial set of equivalence classes of germs of embeddings from a neighborhood
of ∂M to ∂M×[0, 1) which restrict to the identity on ∂M .

We will show that πi GE(N (∂M), ∂M×[0, 1); rel ∂M) is trivial for all i.
For any 0 < a < 1, we have a map

ra : Emb (∂M × [0, a), ∂M × [0, 1); rel (∂M × 0))

→ GE(N (∂M), ∂M×[0, 1); rel ∂M)

which sends each embedding into its class of germ.
We will prove the following two facts.
(1) Given any map λ : Sn → GE(N (∂M), ∂M× [0, 1); rel ∂M), there exist a

number a0 (which we will denote simply by a) and a map

λ̄ : Sn → Emb (∂M × [0, a), ∂M × [0, 1); rel (∂M × 0))

such that ra ◦ λ̄ ' λ and
(2) Given any λ̄ : Sn → Emb (∂M × [0, a), ∂M× [0, 1); rel (∂M ×0)), there exist

hs : Sn → Emb (∂M × [0, a), ∂M × [0, 1); rel N (∂M × 0)), 0 ≤ s <∞, such that
h0 = λ̄ and for all s > 0, hs ∈ Emb (∂M × [0, a), ∂M × [0, 1); rel (∂M × 0)).

Proof of item (1). Let λ : Sn → GE(N (∂M), ∂M×[0, 1); rel ∂M) be a continuous
map. For each z ∈ Sn, let bz : ∂M× [0, az)→ ∂M× [0, 1) be a representative of the
class λ(z) ∈ GE(N (∂M), ∂M×[0, 1); rel ∂M), where ∂M×[0, az) is a neighborhood
of ∂M in ∂M × [0, 1). By continuity of λ, bz is such that the map Sn → (0, 1);
z 7→ az is continuous, and since Sn is compact, bz has a minimum value, say a > 0.
Then bz| : ∂M × [0, a) → ∂M × [0, 1) still is the same class λ(z). Then consider
λ̄ : Sn → Emb (∂M × [0, a), ∂M × [0, 1); rel (∂M × 0)) such that z 7→ bz and
ra : Emb(∂M×[0, a), ∂M×[0, 1); rel (∂M×0))→ GE(N (∂M), ∂M×[0, 1); rel ∂M)
which sends each embedding into its class of germ such that ra ◦ λ̄ ' λ.

Proof of item (2). Let f : ∂M × [0, a) → ∂M × [0, 1) be an embedding such that
f |∂M×0 = id. We define an isotopy hs : ∂M × [0, a)→ ∂M × [0, 1) in the following
way.
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Set Is = [−s, a), for s ∈ [0,∞). First, define an auxiliary family of embeddings
fs : ∂M × Is → ∂M × Is by

fs(x, t) =

{
(x, t) if t ∈ [−s, 0],
f(x, t) if t ∈ [0, a).

Since f |∂M×0 = id, fs is well defined, it is continuous, and it is an embedding
∀s ∈ [0, 1]. Also, f0 = f .

Now, for each s ∈ [0,∞) consider the homeomorphisms gs : [−s, a) → [0, a)
defined by gs(t) = a(t+s)

a+s . Notice that g0 = id[0,a).
Finally define an isotopy hs : ∂M × [0, a)→ ∂M × [0, 1) by

hs(x, t) = (id∂M × gs) ◦ fs ◦ (id∂M × (g−1
s )(x, t) = (id∂M × gs) ◦ fs(x, (g−1

s )(t)).

We have h0 = f0 = f , and for t ∈ [0, sa
s+a ] we have (gs)−1(t) ≤ 0 , which implies

fs(x, (gs)−1(t)) = (x, (gs)−1(t)). Thus, for t ∈ [0, sa
s+a ],

hs(x, t) = (id∂M × gs) ◦ fs(x, (gs)−1(t)) = (id∂M × gs)(x, (gs)−1(t)) = (x, t).

This shows that π0 Emb (∂M × [0, a), ∂M × [0, 1); rel ∂M) = 0.
Analogously, for i ≥ 1, πi Emb (∂M × [0, a), ∂M × [0, 1); rel ∂M) = 0.
Consider f : Sn×∂M×[0, a)→ ∂M×[0, 1) such that for each z ∈ Sn, f |∂M×0 =

id.
Set Is = [−s, a), for s ∈ [0,∞). Define an auxiliary family of embeddings

fs : Sn × ∂M × Is → ∂M × Is by

fs(z, x, t) =

{
(x, t) if t ∈ [−s, 0],
f(z, x, t) if t ∈ [0, a).

And fs has the same properties as before.
Consider the same family of homeomorphisms gs. Then define an isotopy hs :

Sn × ∂M × [0, a)→ ∂M × [0, 1) by

hs(z, x, t) = (id∂M × gs) ◦ fs ◦ (idSn × id∂M × (g−1
s )(z, x, t)

= (id∂M × gs) ◦ fs(z, x, (g−1
s )(t)).

If we apply the map ra to this homotopy, we then get a homotopy in
GE(N (∂M), ∂M× [0, 1); rel ∂M) such that ra ◦ h0 = λ and ∀s > 0, ra ◦ hs ∈
GE(N (∂M), ∂M×[0, 1); rel ∂M).

Proposition 3.9. The restriction map k : GE∂M (N (∂M),M) → TOP (∂M) is a
homotopy equivalence.

Proof. The map k = α ◦ γ−1 is indicated in the following diagram:

GE∂M (N (∂M),M)
γ−1

−−→ GE∂M (N (∂M), ∂M×[0, 1)) α−→ TOP (∂M),

where γ−1 and α are homotopy equivalences, which are proved in Lemma 3.7 and
3.8. So, k is a homotopy equivalence.

Theorem 3.10. The map v : TOP (∂M) → GE∂M (N (∂M),M) is a homotopy
equivalence.
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Proof. The map v = γ ◦ β is indicated in the following diagram:

TOP (∂M)
β−→ GE∂M (N (∂M), ∂M×[0, 1)) α−→ GE∂M (N (∂M),M),

where γ is the homotopy equivalence in Lemma 3.7, β is defined by β = −× id[0,1),
and α ◦ β = idTOP (∂M). Then β and α are homotopy equivalences.

Remark 3.11. The commutativity of square II follows by inspection, where the
maps v and j are homotopy equivalences (by using the same choice of a collar), the
map u is the restriction map and the map g = −× idIR.

Remark 3.12. Clearly, the map i : TOP (M rel N (∂M))→ TOP (Int M rel ∞) is
an isomorphism.

Notice that the map f : TOP (M) → TOP (Int M) in the diagram (**) is not
necessarily a fibration. Consider the following example.

Example. Let M be the cylinder S1 × [0, 1]. There is a homeomorphism τ :
Int M → Int M that is not a restriction of a self-homeomorphism of M . However,
τ is isotopic to the restriction of a self-homeomorphism of M . In other words, the
map induced by the restriction r : TOP (M)→ TOP (Int M) is not a Kan fibration.

Represent the point x ∈ S1 × (0,∞) by x = (eiθ, t), where θ ∈ [0, 2π) and
t ∈ (0,∞).

Let σ : (0,∞) → (0, 1) be any homeomorphism, and for any s ∈ [0, 1] let
ρs : S1×(0,∞)→ S1×(0,∞) be a family of homeomorphisms defined by ρs(eiθ, t) =
(ei(θ+2πts), t). Then τs : S1 × (0, 1) → S1 × (0, 1), defined by τs = (id × σ) ◦ ρs ◦
(id × σ−1), is an isotopy from ρs to id. For s = 1, τ1 is not a restriction of
any homeomorphism from S1 × [0, 1] into itself because the image of the sequence
an = (eiθ0 , 1− 1/n) for any fixed θ0 ∈ [0, 2π) by τ1 does not converge.

4. Wrapping homeomorphisms around a circle

Let W be a manifold without boundary of dimension ≥ 5.

Theorem C (Wrapping homeomorphism around a circle). Let q0 : W → R be a
manifold approximate fibration. Then:

(1) There exists a manifold approximate fibration q : Ŵ → S1 such that the
following diagram commutes :

W
q0−−−−→ Ry yexp

Ŵ −−−−→
q

S1

(2) πn TOP ep(W ) is a direct summand of πn TOP (Ŵ ), for n > 1, where Ŵ is
a compact and connected manifold and W is the infinite cyclic cover of Ŵ .

Before proving this theorem we will give some definitions.
For any topological manifold B, let MAF (B) be the simplicial set of manifold

approximate fibrations over B (see [14, page 12]). If B = S1, then a vertex of
MAF (S1) is q : Ŵ → S1, and if B = R, a vertex of MAF (R) is q0 : W → R.

Let ι : R ↪→ S1 be an orientation preserving embedding. Then the map q| :
q−1(ι(R)) → R is a manifold approximate fibration, called the fiber germ of q
over ι. We say that q has fiber germ q0 if and only if there exists a controlled
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homeomorphism between a manifold approximate fibration q0 : W → R and q|. See
[14]. Then ι induces a map ι∗ : MAF (S1) → MAF (R) which sends a manifold
approximate fibration Ŵ → S1 to a manifold approximate fibration W → R. We
shall prove Theorem C by given a homotopy left inverse for ι∗.

By [14, Theorem 1.4] we have the following commutative diagram:

MAF (S1) '−−−−→
d

Map(S1,MAF (R))

ι∗
y r

y
MAF (R) '−−−−→

d
Map(R,MAF (R))

(***)

The maps ι∗ and r are the restriction maps induced by ι. In order to give a left
inverse to ι∗, we construct a left inverse to r which determines a left inverse to ι∗.

Lemma 4.1. The restriction map r : Map(S1,MAF (R)) → Map(R,MAF (R))
has a homotopy left inverse.

Proof. Let f ∈ Map(S1,MAF (R)). Then the map r, induced by ι, is such that
r(f) = f ◦ ι ∈ Map(R,MAF (R)). Let ∗ ∈ S1. Define the restriction map
r| : Map(S1,MAF (R))→Map(∗,MAF (R)) such that r|(f) = f|∗ : ∗ →MAF (R)
and ∗ goes to f(∗). r| has a homotopy left inverse s : Map(∗,MAF (R)) →
Map(S1,MAF (R)) defined as follows. Let x ∈ Map(∗,MAF (R)). So, x is a
map x : ∗ → MAF (R); ∗ 7→ g. Thus the map s : Map(∗,MAF (R)) →
Map(S1,MAF (R)) is such that x 7→ cx, where cx is the constant map, cx(z) = g.
Then, r| ◦ s : Map(∗,MAF (R))→Map(∗,MAF (R)) is the identity. Thus, apply-
ing any isomorphism Map(R,MAF (R)) ∼= Map(∗,MAF (R)) which sends 0 ∈ R
to ∗, we have that s is a homotopy left inverse of r. Since ι∗ preserves base point,
so do r and s.

Proof of Theorem C (1). From Lemma 4.1 and diagram (***), s determines (up to
homotopy) a homotopy left inverse to ι∗.

Thus, given any manifold approximate fibration q0 : W → R, there exists a man-
ifold approximate fibration q̂ : Ŵ → S1 such that with an orientation preserving
embedding ι, q′ : W ′ → R is controlled homeomorphic to q0 : W → R. In fact,
consider the infinite cyclic cover of Ŵ and S1. Form the pullback

W ′ ↪→−−−−→ Ŵ

q′
y yq̂

R ↪→−−−−→
exp

S1

Then

W ′ = q̂−1(exp(R)) ↪→ Ŵ

q′
y
R

is a manifold approximate fibration (by Corollary 12.14 in [14]), and q′ = q̂| is fiber
germ of q̂ over exp.
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By Corollary 12.14 in [14] we have a manifold approximate fibration q′ : W ′ → R.
From the uniqueness of fiber germs [14], any two fiber germs of a manifold approx-
imate fibration over a connected oriented manifold are controlled homeomorphic.
So it follows that q′ is controlled homeomorphic to q0.

Let MAF (S1)q denote the component of MAF (S1) containing q, and let
MAF (R)q0 denote the component of MAF (R) containing q0.

By [14, Corollary 7.12] we have a commutative diagram

BTOP c(Ŵ
q→ S1) '−−−−→ MAF (S1)qy y

BTOP c(W
q0→ R) '−−−−→ MAF (R)q0

(****)

where the horizontal maps are homotopy equivalences.

Proof of Theorem C(2). From Lemma 4.1, diagram (***) and diagram (****) we
have that the map ι| : BTOP c(Ŵ

q→ S1)→ BTOP c(W
q0→ R), induced by ι∗, has

a homotopy left inverse s| : BTOP c(W
q0→ R) → BTOP c(Ŵ

q→ S1), induced by
the left inverse of ι∗. The maps ι| and s| preserve base points. Thus ι| ◦ s| ' id

implies that πi (TOP c(W
q0→ R)) is a direct summand of πi (TOP c(Ŵ

q→ S1)).
By [17, Theorem 1.1], where B = S1, the forget control map

φ : TOP c(Ŵ
q→ S1)→ TOP h(Ŵ

q→ S1)

is a homotopy split injective, where TOP h(Ŵ
q→ S1) denotes the homotopy fiber

of the simplicial map Ψ : TOP (Ŵ )→Map(Ŵ , S1) defined by Ψ(h) = q ◦ h, where
the homeomorphism h : Ŵ → Ŵ is a vertex of TOP (Ŵ ) and Map(Ŵ , S1) denotes
the simplicial set of maps from Ŵ to S1. Hence, a vertex of TOPh(Ŵ

q→ S1)
consists of a homeomorphism h : Ŵ → Ŵ together with a homotopy from q ◦ h to
q. The elements of TOP h(Ŵ

q→ S1) are called homotopically controlled. Thus,
πi (TOP c(Ŵ

q→ S1)) is a direct summand of πi (TOP h(Ŵ
q→ S1)).

From the fibration sequence TOP h(Ŵ
q→ S1) → TOP (Ŵ ) → Map(Ŵ , S1) we

have the long exact sequence in homotopy

· · · → πi TOP
h(Ŵ

q→ S1)→ πi TOP (Ŵ )→ πi Map(Ŵ , S1)→ · · · .
With the fibration exp : R → S1, when Ŵ is a CW complex, then the map

Map(Ŵ ,R) → Map(Ŵ , S1) is a fibration. Since R ' ∗, we have Map(Ŵ ,R) '
Map(Ŵ , ∗) ' ∗. Thus, ∗ ' Map(Ŵ ,R) → Map(Ŵ , S1)certain components (i.e.
components of the homotopy trivial map) implies πi Map(Ŵ , S1)∗ = 0, for i > 1.
Thus, πi TOP

h(Ŵ
q→ S1) ∼= πi TOP (Ŵ ), for i > 1.

So, πi TOP
c(W

q0→ R) is a direct summand of πi TOP
c(Ŵ

q→ S1); likewise
πi TOP

c(Ŵ
q→ S1) is a direct summand of πi TOP

h(Ŵ
q0→ S1), and by Theorem

1.11, πi TOP
c(W

q0→ R) ∼= πi TOP
ep(W ).

Since W is the infinite cyclic cover of Ŵ induced by q : Ŵ → S1 from exp : R→
S1, the map p : W ↪→ Ŵ induces a map TOP (Ŵ )→ TOP ep(W ).

Hence, for i > 1, πi TOP
ep(W ) is a direct summand of πi TOP (Ŵ ).

Lemma 4.2. π1 Map(Ŵ , S1) ' Z and π0 Map(Ŵ , S1) ' H1(Ŵ ,Z).
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Proof. Let Ŵ be a connected compact manifold and consider the fibration sequence
Z ↪→ R exp→ S1. Then Map(Ŵ , S1) is a fibration and since R ' ∗, Map(Ŵ ,R) '
Map(Ŵ , ∗) ' ∗, which implies πi Map(Ŵ , S1)∗ = 0, for i > 1. From the fibration
sequence Map(Ŵ ,Z) ↪→ Map(Ŵ ,R) → Map(Ŵ , S1) we have a exact sequence in
homotopy

· · · → 0→ π1 Map(Ŵ , S1)→ π0 Map(Ŵ ,Z)→ 0→ · · ·
which implies π1 Map(Ŵ , S1)∗ ∼= Map(Ŵ ,Z) ' Z.

Now, S1 is a topological group, so Map(Ŵ , S1) is an H-space, which implies any
two path components of Map(Ŵ , S1) are homotopy equivalent. Thus,

π0 Map(Ŵ , S1) = [Ŵ , S1] = [Ŵ ,K(Z, 1)] = H1(Ŵ ,Z).

Conclusion: If Ŵ is a connected, compact manifold, then Map(Ŵ , S1)
weak'

H1(Ŵ ,Z)× S1.

Remark 4.3. By Lemma 4.2, π1 Map(Ŵ , S1) ' Z and π0 Map(Ŵ , S1) ' H1(Ŵ ,Z).
Thus,

· · · → 0→ π1 TOP
h(Ŵ

q→ S1) >→ π1 TOP (Ŵ )→ Z→ · · · .
And hence,

π1 TOP
c(Ŵ

q→ S1) c−−−−→ π1 TOP (Ŵ )

direct summand

ya

∥∥∥
0 −−−−→ π1 TOP

h(Ŵ
q→ S1) >−−−−→ π1 TOP (Ŵ ) −−−−→ Z

So, c is injective.
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