The viscous Cahn-Hilliard equation: Morse decomposition and structure of the global attractor
HTML articles powered by AMS MathViewer
- by M. Grinfeld and A. Novick-Cohen
- Trans. Amer. Math. Soc. 351 (1999), 2375-2406
- DOI: https://doi.org/10.1090/S0002-9947-99-02445-9
- Published electronically: February 15, 1999
- PDF | Request permission
Abstract:
In this paper we establish a Morse decomposition of the stationary solutions of the one-dimensional viscous Cahn-Hilliard equation by explicit energy calculations. Strong non-degeneracy of the stationary solutions is proven away from turning points and points of bifurcation from the homogeneous state and the dimension of the unstable manifold is calculated for all stationary states. In the unstable case, the flow on the global attractor is shown to be semi-conjugate to the flow on the global attractor of the Chaffee-Infante equation, and in the metastable case close to the nonlocal reaction–diffusion limit, a partial description of the structure of the global attractor is obtained by connection matrix arguments, employing a partial energy ordering and the existence of a weak lap number principle.References
- Nicholas Alikakos, Peter W. Bates, and Giorgio Fusco, Slow motion for the Cahn-Hilliard equation in one space dimension, J. Differential Equations 90 (1991), no. 1, 81–135. MR 1094451, DOI 10.1016/0022-0396(91)90163-4
- S. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27 (1979), 1084–1095.
- Nicholas D. Alikakos and Giorgio Fusco, Equilibrium and dynamics of bubbles for the Cahn-Hilliard equation, International Conference on Differential Equations, Vol. 1, 2 (Barcelona, 1991) World Sci. Publ., River Edge, NJ, 1993, pp. 59–67. MR 1242229
- Nicholas D. Alikakos and Giorgio Fusco, Slow dynamics for the Cahn-Hilliard equation in higher space dimensions. I. Spectral estimates, Comm. Partial Differential Equations 19 (1994), no. 9-10, 1397–1447. MR 1294466, DOI 10.1080/03605309408821059
- S. B. Angenent, The Morse-Smale property for a semilinear parabolic equation, J. Differential Equations 62 (1986), no. 3, 427–442. MR 837763, DOI 10.1016/0022-0396(86)90093-8
- F. Bai, C. M. Elliott, A. Gardiner, A. Spence, and A. M. Stuart, The viscous Cahn-Hilliard equation. I. Computations, Nonlinearity 8 (1995), no. 2, 131–160. MR 1328591, DOI 10.1088/0951-7715/8/2/002
- Peter W. Bates and Paul C. Fife, Spectral comparison principles for the Cahn-Hilliard and phase-field equations, and time scales for coarsening, Phys. D 43 (1990), no. 2-3, 335–348. MR 1067916, DOI 10.1016/0167-2789(90)90141-B
- Peter W. Bates and Paul C. Fife, The dynamics of nucleation for the Cahn-Hilliard equation, SIAM J. Appl. Math. 53 (1993), no. 4, 990–1008. MR 1232163, DOI 10.1137/0153049
- Peter W. Bates and Jian Ping Xun, Metastable patterns for the Cahn-Hilliard equation. II. Layer dynamics and slow invariant manifold, J. Differential Equations 117 (1995), no. 1, 165–216. MR 1320187, DOI 10.1006/jdeq.1995.1052
- D. Brochet, D. Hilhorst, and A. Novick-Cohen, Maximal attractor and inertial sets for a conserved phase field model, Adv. Differential Equations 1 (1996), no. 4, 547–578. MR 1401404
- Lia Bronsard and Danielle Hilhorst, On the slow dynamics for the Cahn-Hilliard equation in one space dimension, Proc. Roy. Soc. London Ser. A 439 (1992), no. 1907, 669–682. MR 1196438, DOI 10.1098/rspa.1992.0176
- J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258-267.
- Jack Carr, Morton E. Gurtin, and Marshall Slemrod, Structured phase transitions on a finite interval, Arch. Rational Mech. Anal. 86 (1984), no. 4, 317–351. MR 759767, DOI 10.1007/BF00280031
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133, DOI 10.1090/cbms/038
- A. Eden, C. Foias, B. Nicolaenko, and R. Temam, Inertial sets for dissipative evolution equations. Part I: Construction and application, IMA Preprint 812 (1991).
- J. C. Eilbeck, J. E. Furter, and M. Grinfeld, On a stationary state characterization of transition from spinodal decomposition to nucleation behaviour in the Cahn-Hilliard model of phase separation, Phys. Lett. A 135 (1989), no. 4-5, 272–275. MR 985256, DOI 10.1016/0375-9601(89)90112-6
- C. M. Elliott and A. M. Stuart, Viscous Cahn-Hilliard equation. II. Analysis, J. Differential Equations 128 (1996), no. 2, 387–414. MR 1398327, DOI 10.1006/jdeq.1996.0101
- Charles M. Elliott and Zheng Songmu, On the Cahn-Hilliard equation, Arch. Rational Mech. Anal. 96 (1986), no. 4, 339–357. MR 855754, DOI 10.1007/BF00251803
- Bernold Fiedler, Global attractors of one-dimensional parabolic equations: sixteen examples, Tatra Mt. Math. Publ. 4 (1994), 67–92. Equadiff 8 (Bratislava, 1993). MR 1298457
- Bernold Fiedler and Carlos Rocha, Heteroclinic orbits of semilinear parabolic equations, J. Differential Equations 125 (1996), no. 1, 239–281. MR 1376067, DOI 10.1006/jdeq.1996.0031
- P.C. Fife, Models for phase separation and their mathematics, in Nonlinear Partial Differential Equations and Applications, M. Mimura and T. Nishida, eds., Kinokuniya Pubs., Tokyo, in press.
- Robert D. Franzosa, The continuation theory for Morse decompositions and connection matrices, Trans. Amer. Math. Soc. 310 (1988), no. 2, 781–803. MR 973177, DOI 10.1090/S0002-9947-1988-0973177-6
- Robert D. Franzosa, The connection matrix theory for Morse decompositions, Trans. Amer. Math. Soc. 311 (1989), no. 2, 561–592. MR 978368, DOI 10.1090/S0002-9947-1989-0978368-7
- Pedro Freitas, Stability of stationary solutions for a scalar non-local reaction-diffusion equation, Quart. J. Mech. Appl. Math. 48 (1995), no. 4, 557–582. MR 1387092, DOI 10.1093/qjmam/48.4.557
- G. Fusco and J. K. Hale, Slow-motion manifolds, dormant instability, and singular perturbations, J. Dynam. Differential Equations 1 (1989), no. 1, 75–94. MR 1010961, DOI 10.1007/BF01048791
- M. Grinfeld, J. E. Furter, and J. C. Eilbeck, A monotonicity theorem and its application to stationary solutions of the phase field model, IMA J. Appl. Math. 49 (1992), no. 1, 61–72. MR 1177073, DOI 10.1093/imamat/49.1.61
- M. Grinfeld and A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), no. 2, 351–370. MR 1331565, DOI 10.1017/S0308210500028079
- Morton E. Gurtin and Hiroshi Matano, On the structure of equilibrium phase transitions within the gradient theory of fluids, Quart. Appl. Math. 46 (1988), no. 2, 301–317. MR 950604, DOI 10.1090/S0033-569X-1988-0950604-5
- Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371, DOI 10.1090/surv/025
- Harumi Hattori and Konstantin Mischaikow, A dynamical system approach to a phase transition problem, J. Differential Equations 94 (1991), no. 2, 340–378. MR 1137619, DOI 10.1016/0022-0396(91)90096-R
- Jack K. Hale and Geneviève Raugel, Lower semicontinuity of attractors of gradient systems and applications, Ann. Mat. Pura Appl. (4) 154 (1989), 281–326. MR 1043076, DOI 10.1007/BF01790353
- Daniel B. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations, J. Differential Equations 59 (1985), no. 2, 165–205. MR 804887, DOI 10.1016/0022-0396(85)90153-6
- Dunham Jackson, A class of orthogonal functions on plane curves, Ann. of Math. (2) 40 (1939), 521–532. MR 80, DOI 10.2307/1968936
- Hiroshi Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 2, 401–441. MR 672070
- Konstantin Mischaikow, Global asymptotic dynamics of gradient-like bistable equations, SIAM J. Math. Anal. 26 (1995), no. 5, 1199–1224. MR 1347417, DOI 10.1137/S0036141093250827
- B. Neithammer, Existence and uniqueness of radially symmetric stationary points within the gradient theory of phase transitions, Eur. J. Appl. Math. 6 (1995), 45-68.
- B. Nicolaenko, B. Scheurer, and R. Temam, Some global dynamical properties of a class of pattern formation equations, Comm. Partial Differential Equations 14 (1989), no. 2, 245–297. MR 976973, DOI 10.1080/03605308908820597
- A. Novick–Cohen, The nonlinear Cahn-Hilliard equation: transition from spinodal decomposition to nucleation behavior, J. Stat. Phys. 38 (1985), 707-723.
- J. M. Ball (ed.), Material instabilities in continuum mechanics, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1988. Related mathematical problems. MR 970511
- A. Novick-Cohen, On Cahn-Hilliard type equations, Nonlinear Anal. 15 (1990), no. 9, 797–814. MR 1077574, DOI 10.1016/0362-546X(90)90094-W
- A. Novick–Cohen, The Cahn–Hilliard equation: mathematical and modelling perspectives, Advances in Math. Sci. and Appl. 8 (1998), 965–985.
- A. Novick-Cohen and L. A. Peletier, Steady states of the one-dimensional Cahn-Hilliard equation, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), no. 6, 1071–1098. MR 1263907, DOI 10.1017/S0308210500029747
- Amy Novick-Cohen and Lee A. Segel, Nonlinear aspects of the Cahn-Hilliard equation, Phys. D 10 (1984), no. 3, 277–298. MR 763473, DOI 10.1016/0167-2789(84)90180-5
- I. Ohnishi and Y. Nishiura, Spectral comparison between the second and fourth order equations of conservative type with nonlocal terms, Japan J. Indust. Appl. Math. 15 (1998), 253–262.
- James F. Reineck, Connecting orbits in one-parameter families of flows, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 359–374. MR 967644, DOI 10.1017/S0143385700009482
- Jacob Rubinstein and Peter Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math. 48 (1992), no. 3, 249–264. MR 1167735, DOI 10.1093/imamat/48.3.249
- Renate Schaaf, Global solution branches of two-point boundary value problems, Lecture Notes in Mathematics, vol. 1458, Springer-Verlag, Berlin, 1990. MR 1090827, DOI 10.1007/BFb0098346
- P. Sternberg and K. Zumbrun, Connectivity in phase boundaries in strictly convex domains, Arch. Rat. Mech. Anal. 141 (1998), 375–400.
- Taku Yanagisawa and Akitaka Matsumura, Initial-boundary value problem for the equations of ideal magneto-hydro-dynamics with perfectly conducting wall condition, Proc. Japan Acad. Ser. A Math. Sci. 64 (1988), no. 6, 191–194. MR 965964
- J. Wei and M. Winter, Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poicare, Anal. Non Lin., 15 (1998), 459–492.
- Zheng Songmu, Asymptotic behavior of solution to the Cahn-Hillard equation, Appl. Anal. 23 (1986), no. 3, 165–184. MR 870486, DOI 10.1080/00036818608839639
Bibliographic Information
- M. Grinfeld
- Affiliation: Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, Scotland, United Kingdom
- Email: michael@conley.maths.strath.ac.uk
- A. Novick-Cohen
- Affiliation: Faculty of Mathematics, Technion-IIT, Haifa 32000, Israel
- MR Author ID: 132405
- ORCID: 0000-0001-6709-5030
- Email: amync@techunix.technion.ac.il
- Received by editor(s): September 24, 1996
- Published electronically: February 15, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 2375-2406
- MSC (1991): Primary 35K22, 35K30, 58F12, 58F39
- DOI: https://doi.org/10.1090/S0002-9947-99-02445-9
- MathSciNet review: 1650085