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EMBEDDED SINGULAR CONTINUOUS SPECTRUM FOR
ONE-DIMENSIONAL SCHRÖDINGER OPERATORS

CHRISTIAN REMLING

Abstract. We investigate one-dimensional Schrödinger operators with sparse
potentials (i.e. the potential consists of a sequence of bumps with rapidly
growing barrier separations). These examples illuminate various phenomena
related to embedded singular continuous spectrum.

1. Introduction

In this paper, we will study one-dimensional Schrödinger equations on the half-
line

− y′′(x) + V (x)y(x) = Ey(x), x ∈ [0,∞).(1)

We are interested in the spectral properties of the corresponding operators Hα =
− d2

dx2 + V (x) on L2([0,∞)) with boundary conditions y(0) cosα + y′(0) sinα =
0, α ∈ [0, π) (see e.g. [25] for the basic theory). (1) describes the motion of a quan-
tum mechanical particle, and important physical properties of this system depend
directly on the spectral characteristics of the operators Hα (for more background
information, consult e.g. [14]).

Here, we will analyze two classes of potentials V related to the question of the
occurrence of singular continuous spectrum which is embedded in the absolutely
continuous spectrum. We will construct potentials so that σac(Hα) = [0,∞) and,
for a set of boundary conditions α of positive measure, we have that σsc(Hα) ∩
(0,∞) 6= ∅ (see Theorem 3.3 below). There is also a “complementary” construction:
Using similar ideas, we will obtain potentials with σsc(Hα) = [0,∞), σac(Hα) ∩
(0,∞) 6= ∅ for all α (= Theorem 3.5). I do not know of any previous examples for
these types of spectral behavior.

It is more difficult to obtain embedded singular continuous spectrum than, say,
embedded point spectrum because singular continuous spectrum is related to the
subordinacy of the generalized eigenfunction (the notion of subordinacy was intro-
duced and analyzed in [4]; for subsequent developments, see [6], [15]). Here, the
term “generalized eigenfunction” simply refers to a solution of (1) which satisfies
the boundary condition at x = 0. More specifically, one encounters the following
problem: The singular part of the spectral measure is supported on the set where
the generalized eigenfunction is subordinate [4], but even if this set is large, it does
not automatically follow that there actually is singular continuous spectrum. Of
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2480 CHRISTIAN REMLING

course, as for the point spectrum, the situation is completely different: If the gen-
eralized eigenfunction is square integrable, then, trivially, the corresponding energy
is an eigenvalue. In fact, potentials with embedded point spectrum which is dense
in [0,∞) have been known for a relatively long time [12], [21].

We will illuminate these remarks with our second class of potentials. These
examples have purely absolutely continuous spectrum on (0,∞), but, as we will
prove, the set of energies for which the generalized eigenfunction is subordinate
has (local) Hausdorff dimension 1 (= Theorem 4.2b)! (Recall that, by general
principles, this set always has Lebesgue measure zero.) Again, this is, to the best
of my knowledge, the first explicit example for these phenomena.

All potentials in this paper will be sparse potentials (i.e. mainly V = 0). This
is no coincidence: Sparse potentials lead to non-trivial asymptotics of the solutions
of (1), and there are powerful methods which allow a detailed analysis of these
asymptotics. Here, we will rely mainly on further extensions of the techniques
recently developed in [8], [16]. However, sparse potentials were already studied
in the celebrated work [13]; further papers using sparse potentials in one way or
another are [5], [7], [17], [20], [22]. Although the methods of [8] and [16] are very
similar in spirit, the actual implementation of the basic strategy differs in some
respects (actually, the results of [8] are stronger). It turns out that both viewpoints
are needed here. The examples with embedded singular continuous spectrum make
heavy use of the ideas of [8], whereas the second class of examples will be analyzed
with an extension of the techniques developed in [16].

This paper is organized as follows: In the next section, we fix the notations and
explain the basic strategy for an effective analysis of Schrödinger equations with
sparse potentials (as developed in [8], [16]). Sections 3 and 4 investigate in detail
the examples described above.

While I was proofreading this paper, I obtained an interesting preprint by
Molchanov [11] that also discusses sparse potentials. Molchanov’s work has some
overlap with [8], [16] and also with Section 3 of this paper.

I would like to thank U. Keich and T. Wolff for useful discussions, the Deutsche
Forschungsgemeinschaft for financial support, and I am grateful for the hospitality
of Caltech where this work was done.

2. Preliminaries

The potentials we will study will have the form

V (x) =
∞∑
n=1

gnVn(x− an)(2)

with gn > 0, Vn ∈ L1([−Bn, Bn]); the intervals [an − Bn, an + Bn] are assumed to
be disjoint. Let Ln = an −Bn − an−1 −Bn−1 (with a0 = B0 := 0) and

In =
∫ Bn

−Bn

|Vn(x)| dx.(3)

The an’s can of course be recovered from the Ln, Bn, so it suffices to specify these
latter parameters.

Fix α ∈ [0, π), and, for k > 0, let y(x, k) be the solution of (1) with E = k2 and
y(0, k) = − sinα, y′(0, k) = cosα. Note that y satisfies the boundary condition α
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at x = 0. The (modified) Prüfer variables R(x, k), ϕ(x, k) are defined by(
y
y′

)
= R

(
sinϕ
k cosϕ

)
.

Here, we demand that R > 0 and ϕ be continuous in x. Clearly, R,ϕ also depend
on α, but this dependence will not be made explicit in the notation. We write
Rn(k) = R(an −Bn, k), ϕn(k) = ϕ(an −Bn, k) (so Rn, ϕn are the Prüfer variables
immediately before the nth barrier).
R,ϕ obey the equations

(lnR)′ =
V

2k
sin 2ϕ,(4)

ϕ′ = k − V

k
sin2 ϕ.(5)

In particular, we have R(x) ≡ Rn on x ∈ [an−1 +Bn−1, an −Bn] and

ϕn(k) = ϕ(an−1 +Bn−1, k) + kLn.(6)

Fix a compact interval J = [k1, k2] ⊂ (0,∞). Then, for k ∈ J , we can integrate
(4), (5) over the interval [an−Bn, an+Bn] and use an elementary Taylor expansion
in the parameter gnIn. This routine calculation yields (compare [8])

ln
Rn+1(k)
Rn(k)

=
gn
2k

∫ Bn

−Bn

dxVn(x) sin 2θn(x, k)

−g
2
n

k2

∫ Bn

−Bn

dxVn(x) cos 2θn(x, k)
∫ x

−Bn

dt Vn(t) sin2 θn(t, k)

+O(g3
nI

3
n),(7)

where θn(x, k) := k(x + Bn) + ϕn(k). The remainder O(g3
nI

3
n) is bounded by

C(J)g3
nI

3
n where C is independent of k ∈ J and n ∈ N. Finally, let

Cn = max
k∈J

∣∣∣∣dϕ(an−1 +Bn−1, k)
dk

∣∣∣∣ .
The crucial observation is that, because of (6), for appropriate probability mea-

sures on J , the Prüfer angles ϕn(k) (evaluated modulo π) are approximately inde-
pendent random variables, provided that Ln � Cn. This property can be exploited
by computing moments [8] or by investigating the joint distribution of the ϕn’s [16].
With either method, one can analyze (7) rather accurately.

In order to get quantitative conditions on the Ln’s, we need a priori control on
the Cn’s.

Lemma 2.1 ([8]). Assume gnIn → 0 and (Ln + Bn)/Ln+1 → 0. Then there is a
constant C = C(J) such that Cn ≤ CLn−1 and

max
k∈J

∣∣∣∣d2ϕ(an−1 + Bn−1, k)
dk2

∣∣∣∣ ≤ C

(
1 +

n−1∑
m=1

gmImL
2
m

)
.

Proof. This follows from a Gronwallization of the differential equations satisfied by
∂ϕ/∂k, ∂2ϕ/∂k2; see [8, Proposition 5.1] for details.
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3. Embedded singular continuous spectrum

Suppose gnIn ∈ l3. Then (7) can be written as

lnRN+1(k) =
1
2k

Im
N∑
n=1

Xn(k)− 1
2k2

Re
N∑
n=1

Yn(k)

+
1

8k2
Re

N∑
n=1

Zn(k) +
1

8k2

N∑
n=1

g2
n|V̂n(2k)|2 + ρN (k)(8)

where |ρN (k)| ≤ C for all N ∈ N, k ∈ J . Here, we have set

V̂n(2k) =
∫ Bn

−Bn

Vn(x)e2ikx dx(9)

and

Xn(k) = gnV̂n(2k)e2i(ϕn(k)+kBn),

Yn(k) = g2
ne

2i(ϕn(k)+kBn)

∫ Bn

−Bn

dxVn(x)e2ikx
∫ x

−Bn

dt Vn(t),

Zn(k) = g2
n(V̂n(2k))2e4i(ϕn(k)+kBn).

Since Xn, Yn, Zn contain the highly oscillatory factors exp(2iϕn), we expect that
the leading term of (8) will be

∑
g2
n|V̂n(2k)|2. Thus, by choosing the shape of

the bumps Vn carefully, we can get non-trivial k-dependence of the asymptotics of
RN (k) (N → ∞). This idea was already used in [8] to construct potentials with
σac = [E1, E2] ⊂ (0,∞), σsc = [0,∞) \ (E1, E2) (see [8, Theorem 6.3]). As we will
see, it is more difficult to obtain embedded singular continuous spectrum.

The barriers Vn will have the form

Vn(x) = χ(−Bn,Bn)(x)W (x)(10)

where W is the Fourier transform of the characteristic function of a Cantor type set
F . So, construct F as follows: Let δn > 0 be sufficiently small prescribed numbers.
Fix F0 = [a, b] ⊂ (0,∞) and let F1 = F0 \ (c(0)1 − δ0, c(0)1 + δ0) where c(0)1 = (a+ b)/2
is the center of F0. In general, if Fn is a disjoint union of 2n closed intervals with
centers c(n)

m (m = 1, . . . , 2n), set Fn+1 = Fn\
⋃2n

m=1(c
(n)
m −δn, c(n)

m +δn). The set F =⋂
Fn is closed, nowhere dense and has Lebesgue measure |F | = b−a−∑∞

n=0 2n+1δn.
We assume that |F | > 0, and we define

W (x) =
∫
F

cos 2kx dk.(11)

Lemma 3.1. Let F,W (x) be as above. Suppose supn∈N δn2γn <∞ for some γ > 1.
Then W (x) = O((1 + |x|)−1+1/γ).
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Proof. Let fn(x) =
∫
Fn

cos 2kx dk. Obviously, |fn(x) − f(x)| ≤ |Fn \ F | → 0.
Furthermore, by construction of the Fn,

fn+1(x)− fn(x) = −
∫
Fn\Fn+1

cos 2kx dk = −
2n∑
m=1

∫ c(n)
m +δn

c
(n)
m −δn

cos 2kx dk

= − 1
2x

2n∑
m=1

(
sin 2x(c(n)

m + δn)− sin 2x(c(n)
m − δn)

)
= − 1

x
sin 2δnx

2n∑
m=1

cos 2c(n)
m x.

In particular, the infinite sum
∑

(fn+1(x) − fn(x)) is absolutely convergent, and
thus

|f(x)| =

∣∣∣∣∣f0(x) +
∞∑
n=0

(fn+1(x)− fn(x))

∣∣∣∣∣
≤ 1

|x|

(
1 +

∞∑
n=0

2n| sin 2δnx|
)
.(12)

For |x| > 2−γ , define N(x) ∈ N0 by demanding 2−γ < 2−γN(x)|x| ≤ 1. Now the
assertion is obtained by considering separately the sums

∑
n<N(x) and

∑
n≥N(x)

in (12). In the first sum, we use | sin 2δnx| ≤ 1; in the second sum, we estimate
| sin 2δnx| ≤ 2δn|x|, and we use that, by hypothesis, δn ≤ C2−γn. The details of
these straightforward computations are left to the reader.

In order to control the first three sums of (8), we will need the following result
obtained with the methods discussed in [24]:

Proposition 3.2. Let Xn (n ∈ N) be (complex-valued) random variables. Suppose
that there are numbers ρn ≥ 0 such that

∑
ρn ln2 n <∞ and

E|Xn|2 +
n−1∑
m=1

|EXmXn| ≤ ρn.

Then limN→∞
∑N
n=1Xn exists almost surely.

Sketch of the proof. This result follows essentially from [24, Theorem 2.4.2]. Of
course, we need a version for complex-valued Xn’s here, but this extension presents
no difficulties. We then obtain the proposition by taking

g(j,N) = 2
j+N∑
n=j+1

ρn, h(j,N) = 2
j+N∑
n=j+1

ρn ln2 n

in [24, Theorem 2.4.2] and noting that

E

∣∣∣∣∣∣
j+N∑
n=j+1

Xn

∣∣∣∣∣∣
2

≤
j+N∑
n=j+1

E|Xn|2 + 2
j+N∑
n=j+1

n−1∑
m=1

|EXmXn|.

We are now ready to formulate and prove our first main result:
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Theorem 3.3. Let F be a Cantor type set satisfying the assumptions of Lemma
3.1 with γ > 6. Let gn = n−1/2, Bn = nβ with (2 − 4/γ)−1 < β < γ/8, and
assume that nβ/(2γ)Ln−1/Ln → 0. Then the half-line Schrödinger operators Hα

with potential V given by (2), (10), (11) satisfy σac(Hα) = σess(Hα) = [0,∞),
σp(Hα) ∩ (0,∞) = ∅ and, for a set of boundary conditions α of positive measure,
σsc(Hα) ∩ (0,∞) 6= ∅.
Remarks. 1. The following proof also works under more general assumptions on
γ, gn, Bn, Ln. However, these general conditions are very clumsy, and it seems
pointless to make them explicit.

2. The proof will show that, more precisely, σsc(Hα)∩R\F 2 = ∅ for almost all α,
and σsc(Hα)∩F 2 6= ∅ for a set of α’s of positive measure. Here, F 2 = {k2 : k ∈ F}.
Note that the method of [8] (which would establish that the spectrum is purely
absolutely continuous on (0,∞) \ F 2 for every boundary condition) does not work
here because of the slow decay of W (x).

Proof. The assertion on σess follows from the fact that V (x) → 0. Furthermore, a
standard Gronwall estimate shows that because of the rapid growth of the barrier
separations Ln, (1) has no L2-solutions if E > 0.

Moving on to the non-trivial parts of the proof, we fix f ∈ C∞0 (0,∞) with
f ≥ 0, supp f ∩ F = ∅ and

∫
f(k) dk = 1. In the first part of the proof, we

will show with the aid of Proposition 3.2 that almost surely with respect to the
probability measure dP (k) = f(k) dk, the right-hand side of (8) remains bounded
as N goes to infinity. Using (again) a Gronwall estimate, one can easily extend this
statement to x ∈ ⋃n[an−Bn, an+Bn], i.e., R(x, k) is bounded on all of x ∈ [0,∞).
Running through this argument for two different initial angles ϕ(0, k) then shows
that all solutions are bounded for almost every k ∈ supp f . Since f is arbitrary
and F is nowhere dense, this will establish the claim on σac (by [23, Theorem 5]).

Let

εn =

(∫
|x|>Bn

|W (x)|2 dx
)1/2

.

We will need

Lemma 3.4. a) Let f(k) be a bounded function. Then there is a constant C =
C(f), such that ∫ ∣∣∣V̂n(2k)− πχF∪−F (k)/2

∣∣∣2 f(k) dk ≤ Cε2n.

b) limn→∞ V̂n(2k) = πχF∪−F (k)/2 for almost every k.

Proof. a) A calculation using (9), (10), (11), and the Plancherel formula [19, The-
orem 9.13(b)] yields ∫ ∣∣∣V̂n(2k)− πχF∪−F (k)/2

∣∣∣2 dk = πε2n.

This obviously implies the assertion.
b) Since γ > 6 > 2, Lemma 3.1 shows that W ∈ Lp for some p < 2. Thus the

assertion follows from Zygmund’s Theorem on the pointwise convergence of Fourier
transforms [26] and the fact that Bn →∞.
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We are now ready to compute the moments of Xn, Yn, Zn. Note that Lemma 3.1
implies that (In was defined in eq. (3))

In ≤ Cnβ/γ , εn ≤ Cnβ/γ−β/2.(13)

In particular, we have that
∑

(gnIn)3 <∞; thus we may indeed use (8).
Let us first verify that Xn satisfies the assumptions of Proposition 3.2. Since we

are interested in asymptotic properties (namely, the boundedness of
∑
Xn almost

everywhere), we may restrict n to large values n ≥ n0. In the sequel, we will do so
(if necessary) without explicit mention.

An integration by parts shows that (for m < n)

|EXmXn| = gmgn

∣∣∣∣∫ V̂m(2k)V̂n(2k)e2i(ϕm(k)−ϕn(k)+k(Bm−Bn))f(k) dk
∣∣∣∣

=
gmgn

2

∣∣∣∣∣
∫

V̂mV̂nf

ϕ′m − ϕ′n +Bm −Bn

d

dk
e2i(ϕm−ϕn+k(Bm−Bn)) dk

∣∣∣∣∣
≤ gmgn

2

∫ ∣∣∣∣∣ ddk
(

V̂m(2k)V̂n(2k)f(k)
ϕ′m(k)− ϕ′n(k) +Bm −Bn

)∣∣∣∣∣ dk.(14)

Evaluating the derivative with the product rule, we get four different terms. The
most dangerous term involves the derivative of the denominator. Lemma 2.1 shows
that we can estimate this contribution by

Cgmgn

n−1∑
s=1

gsIs
L2
s

L2
n

∫
|V̂m(2k)V̂n(2k)|f(k) dk.(15)

Here and in the sequel, C denotes a constant which depends only on f . The actual
value of C may change from one formula to the next.

We claim that
n−1∑
s=1

gsIsL
2
s ≤ Cn−1/2+β/γL2

n−1.

This estimate will be used extensively throughout the rest of this section. It says
that the sum is dominated by its last term, and this is true because of the rapid
growth of Ls. Here is the formal argument: Since Ln−1/Ln → 0, we can find
C,α > 0 so that L2

s/L
2
n−1 ≤ Ce−α(n−s) for all s ≤ n− 1. Hence

n−1∑
s=1

gsIsL
2
s ≤ CL2

n−1e
−αn

n−1∑
s=1

s−1/2+β/γeαs

≤ CL2
n−1e

−αn
∫ n

1

s−1/2+β/γeαs ds ≤ Cn−1/2+β/γL2
n−1.

(Recall that C does not necessarily have the same value in every formula.) Here,
we have estimated the integral by an integration by parts.

Since supp f ∩ F = ∅, we get from Lemma 3.4a)∫
|V̂mV̂n|f ≤

(∫
|V̂m|2f

)1/2(∫
|V̂n|2f

)1/2

=
(∫ ∣∣∣V̂m − πχF∪−F /2

∣∣∣2 f ∫ ∣∣∣V̂n − πχF∪−F /2
∣∣∣2 f)1/2

≤ Cεmεn.
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Thus we can bound (15) by

Cm−1/2+β/γ−β/2n−1+2β/γ−β/2L
2
n−1

L2
n

.

The other contributions from (14) (where d/dk acts on the numerator) are much
easier to deal with. We use the obvious estimates |V̂i| ≤ Ii, |V̂ ′i | ≤ 2BiIi. It follows
that these terms can be bounded by Cnc/Ln for some c. In conclusion, we see that
EXmXn satisfies an estimate of the form

|EXmXn| ≤ C

(
nc

Ln
+m−1/2+β/γ−β/2n−1+2β/γ−β/2L

2
n−1

L2
n

)
.

We now assume that the exponent of m is larger than −1; the proof in the other
case is completely analogous. Then summing over m yields

n∑
m=1

|EXmXn| ≤ C

(
nc+1

Ln
+ n−1/2+3β/γ−βL

2
n−1

L2
n

)
.(16)

Note that, as promised, the first term on the right-hand side is completely harmless
because of the rapid growth of the Ln (faster than exponential).

In order to control E|Xn|2, we use again the fact that supp f ∩F = ∅ and apply
Lemma 3.4a):

E|Xn|2 = g2
n

∫
|V̂n(2k)|2f(k) dk

= g2
n

∫ ∣∣∣V̂n(2k)− πχF∪−F (k)/2
∣∣∣2 f(k) dk

≤ Cg2
nε

2
n ≤ Cn−1+2β/γ−β.

Now it is straightforward to verify that this estimate and (16) indeed ensure that
Proposition 3.2, with

ρn = C

(
n−1+2β/γ−β +

nc+1

Ln
+ n−1/2+3β/γ−βL

2
n−1

L2
n

)
,

applies to
∑
Xn.

In the remainder of this section, it will be convenient to simplify the notation
by using the following convention: We will not write out terms which obviously
decay so rapidly that they do not pose any difficulties. An example would be the
contribution nc+1/Ln in (16); note, however, that this term could even be the
dominant one in (16), namely, if the Ln grow unreasonably fast. In any event, we
will alert the reader by writing . instead of ≤ whenever this convention has been
applied.

The above strategy can also be used to control
∑
Yn,
∑
Zn. For instance, the

leading term in the estimate on |EYmY n| (m < n) is

C(gmImgnIn)2
n−1∑
s=1

gsIs
L2
s

L2
n

≤ Cm−1+2β/γn−3/2+3β/γ L
2
n−1

L2
n

,

and summing this over m (m < n) yields the bound Cn−3/2+5β/γL2
n−1/L

2
n. We

omit the details of these computations, since the argument is sufficiently close to
the discussion above. It turns out that Proposition 3.2 also proves that

∑
Yn,
∑
Zn

are bounded (in fact, convergent) for almost all k ∈ supp f .
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It remains to show that lim supN→∞
∑N
n=1 g

2
n|V̂n(2k)|2 < ∞ for almost all k

with respect to dP = f dk. To this end, let

S(k) := lim
N→∞

N∑
n=1

g2
n|V̂n(2k)|2 ∈ [0,∞].

Now notice that by monotone convergence and, as above, the fact that supp f∩F =
∅ we have that

∫
S(k)f(k) dk ≤ C

∑
g2
nε

2
n < ∞, thus indeed S(k) < ∞ for almost

every k ∈ supp f . As explained above, this completes the proof of σac = [0,∞).
In order to prove the existence of singular continuous spectrum, we use the

strategy of the proof of [8, Theorem 1.6(2)]. So pick f ∈ C∞0 (0,∞) with f ≥ 0,∫
f(k) dk = 1 and F ⊂ supp f . It suffices to show that (with dP (k) = f(k) dk)

E

∣∣∣∣∣
N∑
n=1

Xn

∣∣∣∣∣
2

= o(ln2N),(17)

and similarly for Yn, Zn. For if this holds, then, by the Chebyshev inequality,

P

(∣∣∣∣∣
N∑
n=1

Xn

∣∣∣∣∣ ≥ δ lnN

)
≤ E|∑N

n=1Xn|2
δ2 ln2N

→ 0 (N →∞)

for any δ > 0. In particular, we can find a subsequence Ni →∞ so that

∞∑
i=1

E|
Ni∑
n=1

Xn|2 ln−2Ni <∞,

and now the Borel-Cantelli Lemma says that

P

(∣∣∣∣∣
Ni∑
n=1

Xn

∣∣∣∣∣ ≥ δ lnNi for infinitely many i

)
= 0.

Of course, analogous statements hold if Xn is replaced with Yn or Zn.
On the other hand, Lemma 3.4b) implies that limn→∞ V̂n(2k) = π/2 for almost

every k ∈ F . If δ from above is small enough, we thus see from (8) that

lim
i→∞

RNi(k) ≥ lim
i→∞

(
c1

Ni∑
n=1

g2
n − c2δ lnNi

)
= ∞

for almost every k ∈ F . Hence the absolutely continuous part of the spectral
measure ρα gives zero weight to F 2 = {k2 : k ∈ F} [10, Theorem 1.2]. As noted
at the beginning of the proof, this also holds for the point part of ρα. Moreover, α
was arbitrary, so the spectral averaging formula (see e.g. [3]) becomes

0 < |F 2| =
∫ π

0

ρα(F 2) dα =
∫ π

0

ρ(sc)
α (F 2) dα.

This forces ρ(sc)
α (F 2) > 0 for a set of α’s of positive measure, as desired.

It remains to prove (17). To this end, let SN =
∑N

n=1Xn. Then

E|SN |2 ≤ E|SN−1|2 + E|XN |2 + 2|ESN−1XN |.(18)
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Clearly, E|XN |2 ≤ Cg2
N = CN−1. In order to estimate ESN−1XN , we use the

integration by parts argument from the first part of this proof. This gives

|ESN−1XN | ≤ CgN

∫ ∣∣∣∣∣ ddk
(
f(k)V̂N (2k)SN−1(k)

ϕ′N (k) +BN

)∣∣∣∣∣ dk.
This time, there are two potentially dangerous terms: the first one coming from the
derivative of the denominator and the second one involving dSN−1/dk. The first
contribution is treated as above to obtain the bound

CgN

N−1∑
s=1

gsIs
L2
s

L2
N

∫
|fV̂NSN−1| dk ≤ CN−1+β/γ L

2
N−1

L2
N

(
E|SN−1|2

)1/2
.

The last estimate follows by the Cauchy-Schwarz inequality, Lemma 3.4a), and the
usual bound on

∑N−1
s=1 gsIsL

2
s.

As for the second term, we note that the leading term of

dSN−1

dk
=
N−1∑
n=1

gn
d

dk
V̂n(2k)e2i(ϕn(k)+kBn)

comes from differentiating e2iϕn . Now the usual techniques show that the corre-
sponding contribution to ESN−1XN can be bounded by Cg2

NLN−1/LN .
As before, we need not worry about the remaining terms which can be bounded

by an expression of the form CN c/LN , and the rapid growth of LN guarantees that
these terms are unimportant. So, if we put everything together, (18) becomes

E|SN |2 . E|SN−1|2 + CN−1 + CN−1+β/γ L
2
N−1

L2
N

(
E|SN−1|2

)1/2
.

By an inductive argument, one can now prove that

(
E|SN |2

)1/2 . C

N∑
n=1

n−1+β/γ L
2
n−1

L2
n

+ C

(
N∑
n=1

n−1

)1/2

.

In fact, the statement needed here is exactly [8, Lemma 6.2]; it would be pointless
to repeat that proof here. In any event, using the assumptions of Theorem 3.3, we
see that we have the required bound E|SN |2 = o(ln2N).

The proof of (17) for Yn and Zn is similar. Again, we sketch the argument for
Yn and leave the proof for Zn to the reader.

An elementary estimate yields E|YN |2 ≤ CN−2+4β/γ . As usual, ESN−1Y N
(here, Sn =

∑n
t=1 Yt, of course) is treated with an integration by parts, and the most

serious attention has to be paid to the contribution involving (d/dk)(1/(ϕ′N+BN )).
This term can be bounded by

C(gNIN )2
N−1∑
s=1

gsIs
L2
s

L2
N

∫
f |SN−1| dk ≤ CN−3/2+3β/γ L

2
N−1

L2
N

(
E|SN−1|2

)1/2
.

If we collect all terms and use the inductive argument from above, we finally get
the following estimate

(
E|SN |2

)1/2 . C

N∑
n=1

n−3/2+3β/γ L
2
n−1

L2
n

+ C

(
N∑
n=1

n−2+4β/γ

)1/2

.
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Again, a routine verification shows that this latter expression is of order o(lnN)
(in fact, it is even bounded), as desired. 2

One can interchange the roles of F and (0,∞) \ F to obtain potentials with
embedded absolutely continuous spectrum. More precisely, proceed as follows: Pick
an even function g ∈ S(R) (the Schwartz class) with g > 0 and g(k) = 1 if k ∈ F .
Define

W (x) =
∫ ∞

0

(g(k)− χF (k)) cos 2kx dk.(19)

Theorem 3.5. Assume that F, γ, gn, Bn, Ln satisfy the assumptions of Theorem
3.3. Then, for all α, the half-line Schrödinger operator Hα with potential V given
by (2), (10), (19) satisfies σsc(Hα) = σess(Hα) = [0,∞), σp(Hα) ∩ (0,∞) = ∅ and
σac(Hα) = F 2.

Large parts of this proof are similar to the corresponding arguments of the proof
of Theorem 3.3. Therefore, these parts of the proof will only be sketched.

As before, it is easy to verify the assertions on σess, σp. We also have an analogue
of Lemma 3.4 where the function πχF∪−F (k)/2 now is replaced with Ŵ (k) :=
π(g(k) − χF∪−F (k))/2. Note that Ŵ (k) = 0 if k ∈ F . Moreover, if I ⊂ (0,∞)
is a compact set with I ∩ F = ∅, then infk∈I |Ŵ (k)| > 0. Finally, we still have
the estimates (13), because g ∈ S(R) implies that the part

∫
g(k) cos 2kx dk of W

decays faster than any power of x.
To prove the assertion on σsc, fix f ∈ C∞0 (0,∞) with f ≥ 0, supp f ∩F = ∅, and∫
f dk = 1. Now we can repeat the arguments from the last part of the proof of

Theorem 3.3. In this way, we see that ρ(α)
ac ((0,∞)\F 2) = 0 for all α, hence, since F

is nowhere dense and σess = [0,∞), σp∩(0,∞) = ∅, we must have σsc(Hα) = [0,∞),
as claimed.

Now let dP (k) = |F |−1χF (k) dk. We want to estimate EXmXn (m ≤ n), where
the expectation is computed with this probability measure. To this end, we first
observe that there exist functions fN(k) ∈ C∞0 (0,∞) (N ∈ N) with 0 ≤ fN ≤ 1 and∫

|χF (k)− fN (k)| dk ≤ C2(1−γ)N ,

∫
|f ′N(k)| dk = 2N+1(20)

(γ is from Lemma 3.1). To see this, simply approximate χFN by an appropriate
smooth function. Here, FN is the set obtained in the Nth step of the construction
of F (see the discussion preceding Lemma 3.1).

Using these approximations of χF , we get (for m < n)

|EXmXn| = gmgn|F |−1

∣∣∣∣∫ χF (k)V̂m(2k)V̂n(2k)e2i(ϕm(k)−ϕn(k)+k(Bm−Bn)) dk

∣∣∣∣
≤ gmgn|F |−1

(
ImIn

∫
|χF (k)− fN (k)| dk

+
∣∣∣∣∫ fN(k)V̂m(2k)V̂n(2k)e2i(ϕm(k)−ϕn(k)+k(Bm−Bn)) dk

∣∣∣∣) .
Clearly, the first term can be bounded by CgmgnImIn2(1−γ)N . In the second term,
we use again an integration by parts. This time, the terms obtained by differenti-
ating fN and, as usual, 1/(ϕ′m−ϕ′n+Bm−Bn) deserve the most serious attention.
We use the by now familiar procedures and also (20) for the term involving f ′N . We
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get bounds of the form Cgmgn2NImIn/Ln and

Cgmgnn
−1/2+β/γ L

2
n−1

L2
n

∫
fN |V̂mV̂n| dk

≤ Cm−1/2n−1+β/γ L
2
n−1

L2
n

(
ImIn

∫
|fN − χF | dk +

∫
χF |V̂mV̂n| dk

)
≤ Cm−1/2n−1+β/γ L

2
n−1

L2
n

(
(mn)β/γ 2(1−γ)N + εmεn

)
,

respectively. Now we can take, say, N = n and sum the resulting bounds over m
(again, we will treat explicitly only the case where the exponent of m is larger than
−1). We thus obtain

n−1∑
m=1

|EXmXn| . Cn−1/2+3β/γ−βL
2
n−1

L2
n

.

Moreover, the analogue of Lemma 3.4a) implies that E|Xn|2 = g2
n|F |−1

∫
F |V̂n(2k)|2

dk ≤ Cg2
nε

2
n. These estimates together with the assumptions of the theorem show

that Proposition 3.2 is applicable. By similar arguments, the same holds for Yn
and Zn.

Finally, by the analogue of Lemma 3.4a) again,
∞∑
n=1

g2
n

∫
F

|V̂n(2k)|2 dk ≤ C

∞∑
n=1

g2
nε

2
n <∞,

so the monotone convergence theorem implies that
∑
g2
n|V̂n(2k)|2 <∞ for almost

every k ∈ F . We have thus shown that for almost all k ∈ F , (1) has only bounded
solutions. Therefore every subset F ′ ⊂ F with |F ′| > 0 also satisfies ρ(α)

ac (F ′2) > 0
[23, Theorem 5]. It is easy to see from the properties of F that this forces σac ⊃ F 2.
On the other hand, we know already that σac ⊂ F 2, hence σac = F 2, as claimed.
2

4. Subordinate solutions

To begin with, recall the results from [4]. Write ‖y‖x := (
∫ x
0
|y(t)|2 dt)1/2. A

solution y 6≡ 0 of (1) is called subordinate if limx→∞ ‖y‖x/‖w‖x = 0 for every
linearly independent solution w of the same equation. The generalized eigenfunction
vα(x,E) is, by definition, the solution of (1) with the initial values vα(0, E) =
− sinα, v′α(0, E) = cosα. Note that vα satisfies the boundary condition described
by α.

The following basic result relates the notion of subordinacy to the boundary
behavior of the m-function (for more information on the m-function, see e.g. [1]).

Theorem 4.1 ([4]). vα(·, E) is subordinate if and only if limε→0+ |mα(E + iε)| =
∞.

Motivated by Theorem 4.1, we consider the sets

Sα = {E ∈ R : vα(·, E) is subordinate}.
Then, by Theorem 4.1 and basic facts on the m-function, Sα supports the singular
part of the spectral measure ρα (see [4]). Note that each Sα has Lebesgue measure
zero because the m-function has a finite limit almost everywhere. Therefore, the
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result below is of interest. It shows that Sα can be large without there being any
singular continuous spectrum (namely, if gn ∈ l2 \ l1 in Theorem 4.2).

These phenomena can not occur for point or absolutely continuous spectra. That
is to say, the existence (or non-existence) of point and absolutely continuous spec-
trum, respectively, can always be read off from the size of the corresponding minimal
supports. This is due to the fact that point and absolutely continuous measures
are equivalent to counting and Lebesgue measure, respectively, restricted to these
supports. Singular continuous measures do not, in general, have such a univer-
sal property. See also [2], [9] for a discussion of related issues in the context of
Schrödinger operators.

Theorem 4.2. Assume that Bn = B, Vn(x) = W (x) (where W ∈ L1([−B,B]),
W 6≡ 0), gn → 0, and Ln−1/Ln → 0. Consider the Schrödinger operators Hα with
potential V given by (2). Then for all boundary conditions α, we have:
a) [8] If gn ∈ l2, then the spectrum of Hα is purely absolutely continuous on (0,∞).
b) If gn /∈ l1, then for any open set U ⊂ (0,∞), the set Sα ∩ U has Hausdorff
dimension 1.

Remarks. 1. We could also treat n-dependent barriers Vn with our methods, but
in this case one needs additional assumptions on the Fourier transforms V̂n.

2. If gn /∈ l2, the spectrum is purely singular continuous on (0,∞) by [8, Theorem
1.6(2)]. Note that part b) of the theorem continues to hold. However, in this case
this statement follows quite easily from the results of [6], [15], and the following
rather involved proof would clearly be inappropriate here.

Proof. a) This is [8, Theorem 1.6(1)].
b) Here is the strategy of the proof. Fix α, and assume, without loss of generality,

that U is contained in a compact subset of (0,∞). Also, as above, it will be
convenient to work with wavenumbers k =

√
E instead of energies E. Since In is

constant, (7) yields

lnRN+1(k) =
1
2k

Im Ŵ (2k)
N∑
n=1

gne
2iϕn(k) + ρN(k)(21)

where |ρN (k)| ≤ C(U)
∑N

n=1 g
2
n for all k ∈ U and

Ŵ (2k) =
∫ B

−B
W (x)e2ik(x+B) dx.

We will construct a probability measure P on U so that the sum on the right-hand
side of (21) goes to −∞ almost surely with respect to P . Moreover, P will give
zero weight to sets of Hausdorff dimension less than 1. In this way, we will obtain
“small” solutions on a set of Hausdorff dimension 1.

To carry out this program, pick numbers Nn ∈ N, such that Nn → ∞ and
NnNn−1Ln−1/Ln → 0 as n→∞. Since Ŵ is analytic, its zeros are isolated. Thus
it clearly suffices to prove the claim for the case when U is an open interval with
infk∈U |Ŵ (2k)| > 0 (and, as above, inf U > 0, supU <∞). For n ≥ n0, we let

ln :=
π

NnLn

(
1 +

θn
Nn

)
,(22)

with as yet unspecified n0 ∈ N and θn ∈ [0, 1]. We also set ln0−1 = |U |. Now a
straightforward computation shows that it is possible to choose first n0 sufficiently
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large and then inductively the θn (n ≥ n0), such that

rn :=
ln−1

lnNn
∈ N ∀n ≥ n0.

For instance, we have that for n > n0 and for fixed θn−1 the quantity

ln−1

lnNn
=

Ln
Nn−1Ln−1

1 + θn−1/Nn−1

1 + θn/Nn

runs over an interval of size ≥ Ln/(Ln−1Nn−1(Nn+1)) as θn runs over [0, 1]. Since
this latter expression tends to infinity, the corresponding interval must contain an
integer, provided n is large enough. A similar argument works in the case n = n0.

In order to simplify the notation, we will assume that n0 = 1. The reader can
verify easily that our arguments are valid in the general case as well.

By definition of r1 and l0, the original interval U = I(0) can be divided into r1N1

subintervals I(1)
i of equal length l1. Each of these subintervals I(1)

i , in turn, can
be divided into r2N2 sub-subintervals I(2)

j of equal length l2 etc. So we obtain a

sequence of partitions U =
⋃
j I

(n)
j which become increasingly finer. Every interval

I
(n)
j belonging to the nth partition has length ln and contains exactly rn+1Nn+1

elements of the (n+ 1)st partition.
Now we define correspondingly discrete approximations ψn of the Prüfer angles

ϕn. The variable ψn will take the values tπ/Nn (t = 0, 1, . . . , Nn − 1), and ψn will
be constant on every I(n)

j . Let n ∈ N, fix one of the intervals I(n−1)
i , and consider

the corresponding subintervals I(n)
j ⊂ I

(n−1)
i . By construction, there are rnNn such

intervals I(n)
j . To fix the notation, let us assume that we obtain these intervals if

j runs from 1 to rnNn. We further assume that this labeling is the natural one in
the sense that if j < j′, then I

(n)
j lies left of I(n)

j′ . Now consider the sth group of
Nn such intervals (where s ∈ {1, . . . , rn}), i.e. consider

{I(n)
j : j = (s− 1)Nn + 1, . . . , sNn}.(23)

Determine t0 ∈ {0, 1, . . . , Nn − 1} so that |t0π/Nn − ϕn(k0)| is minimal. In this
definition, k0 is the left endpoint of the first interval (i.e. j = (s − 1)Nn + 1 in
(23)), and the difference t0π/Nn − ϕn(k0) has to be evaluated modulo π. Set
ψn(k) = (t0 − 1 + m)π/Nn if k lies in the mth interval (i.e. j = (s − 1)Nn +m in
(23)). Here, m takes the values m = 1, . . . , Nn. Carry out this procedure for all
I
(n−1)
i to define ψn(k) on all of k ∈ U .

In fact, strictly speaking, this does not define ψn on all of U , since we have
not distinguished between the open and closed intervals I(n)

j . So the reader might
worry (rightly, at this point) that ψn(k) is not well-defined at the endpoints of the
I
(n)
j . However, as we will see shortly, the measure P we are going to construct will

be continuous, and thus the above procedure does define ψn(k) almost everywhere.
This is all we will need. For definiteness, let us agree that in the sequel, it is
understood that I(n)

j denotes the open interval.
Note that, by Lemma 2.1,

ϕn(k + l)− ϕn(k) = lLn (1 +O(Ln−1/Ln)) .
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Using this, (22), and NnLn−1/Ln → 0, one can verify easily that

|ψn(k)− ϕn(k)| ≤ C

Nn
(24)

where C depends only on U .
Now let pn(t) be probabilities, i.e. we require that pn(t) ≥ 0 and

∑Nn−1
t=0 pn(t) = 1

for all n. Notice that, by construction, ψm(k) is constant on every interval k ∈ I(n)
j

with n ≥ m because every such interval is contained in some I(m)
i . Thus it makes

sense to look for a measure P with the property that for all I(n)
j ,

P (I(n)
j ) =

n∏
m=1

pm(tm)
rm

(25)

where the tm describe the values of the ψm on I(n)
j . More precisely, tm ∈ {0, 1, . . . ,

Nm− 1} is defined by requiring that the value of ψm on I(n)
j be given by tmπ/Nm.

Lemma 4.3. a) There is a unique probability (Borel) measure P on I(0) = U , such
that P (I(n)

j ) is given by (25) for all n, j.
b) The ψn become independent random variables with distributions pn, i.e.

P

(
ψ1 =

t1π

N1
, . . . , ψn =

tnπ

Nn

)
= p1(t1) · · · pn(tn).

c) Suppose pn(t) ≤ C/Nn for all n, t. Then P (A) = 0 for every set A ⊂ U with
Hausdorff dimension dimA < 1.

Remark. We gave the lemma in a slightly more general form than actually needed
here (for instance, we do not need uniqueness) because it is easy to obtain these
stronger statements.

Proof. a) To begin with, note that any P satisfying (25) must be continuous: On
the one hand, for any fixed n, the measures of the (open!) intervals I(n)

j already

add up to 1, hence the endpoints of the I(n)
j are a set of measure zero. On the other

hand, since rn → ∞, there cannot be any atoms different from these endpoints,
either.

Now let Pn be the right continuous (say), monotonically increasing step function
with the following properties: Pn(inf U) = 0, and Pn is constant on every I(n)

j and

has a jump of size P (I(n)
j ) at the right endpoint of I(n)

j . It is easy to verify that the
Pn increase to a limit function P which generates a probability measure consistent
with (25). This proves existence.

For the uniqueness part, we need only show that (25) determines P (a, b) for
arbitrary a < b (since we know already that P is continuous). This, however, is
obvious, because any open interval (a, b) can be approximated by an increasing
sequence of finite unions of the original intervals I(n)

j .
b) This follows from (25). Note that by construction the conditions ψi =

tiπ/Ni (i = 1, . . . , n) hold on precisely r1 · · · rn intervals I(n)
j .

c) By general facts on Hausdorff measures [18, Section 3.3], the assertion will
follow if we can show that for any fixed γ < 1, we have that for P -almost every k,

lim
δ→0+

sup
J

P (J)
|J |γ = 0.(26)
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Here, the sup is taken over all intervals J of length |J | ≤ δ which contain k. In
fact, we will show that in the case at hand, (26) holds for all k ∈ U , and the limit
is uniform in k.

So let J ⊂ U be an interval of length |J | ≤ δ. Let n be the largest integer for
which J is contained in the union of two intervals I(n)

j ∪ I(n)
j+1. Then J contains at

least one of the intervals I(n+1)
i (for if this is not true, we get a contradiction to

the definition of n). In particular, 2 ≤ 2|J |/ln+1, and thus J intersects at most
2 + (|J |/ln+1) ≤ 3|J |/ln+1 intervals I(n+1)

i . Clearly, each of these intervals satisfies

P (I(n+1)
i ) ≤ C

rn+1Nn+1
max
j
P (I(n)

j ),

and therefore,

P (J) ≤ 3C|J |
rn+1Nn+1ln+1

max
j
P (I(n)

j ) =
3C|J |
ln

max
j
P (I(n)

j ).

Using |J | ≤ 2ln, the definitions of rn, ln, and the obvious estimate maxP (I(n)
j ) ≤

Cn
∏n
m=1(rmNm)−1, we deduce that for fixed γ < 1,

P (J)
|J |γ ≤ 12πCn+1

l0
(NnLn)γ−1.

Since Ln grows faster than exponentially (recall Ln/Ln−1 → ∞) and n goes to
infinity as δ tends to zero, we see that we indeed have (26).

As our next step in the proof of Theorem 4.2, we note

Lemma 4.4. Let P be as in Lemma 4.3. Then for P -almost every k we have that

lnRN+1(k) =
1
2k

Im Ŵ (2k)
N∑
n=1

gnE(e2iψn) + o

(
N∑
n=1

gn

)
.

Remarks. 1. There is an analogue of this lemma for n-dependent barriers Vn. The
proof is more difficult in this case.

2. The estimate on the error term is not uniform in k.

Proof. If we replace the angles ϕn in (21) with their discrete counterparts ψn, then,
by (24), we obtain an error of order

O

(
N∑
n=1

gn/Nn

)
= o

(
N∑
n=1

gn

)

(recall Nn →∞). It remains to show that, almost surely,
∑N
n=1Xn = o(

∑N
n=1 gn)

where Xn := gn(e2iψn − E(e2iψn)). By Lemma 4.3b), the Xn are independent
random variables. Moreover, EXn = 0 and E|Xn|2 ≤ g2

n, hence, by [24, Theorem
3.3.1] with p = 2, it suffices to show that

∑
g2
n(
∑n

i=1 gi)
−2 <∞. This, however, is
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easy to check:
∞∑
n=2

g2
n

(
∑n
i=1 gi)

2 ≤ C

∞∑
n=2

gn

(
∑n

i=1 gi)
2

= C
∞∑
n=2

(
1− gn∑n

i=1 gi

)(
1∑n−1
i=1 gi

− 1∑n
i=1 gi

)

≤ C

∞∑
n=2

(
1∑n−1
i=1 gi

− 1∑n
i=1 gi

)
<∞.

Now we are at last in a position to prove the claim of the theorem. First of all,
recall the remarks made at the beginning of this proof. So, let U ⊂ (0,∞) be an
open interval with inf U > 0, supU < ∞, and infk∈U |Ŵ (2k)| > 0. We further
demand that the phase of Ŵ does not vary much if k runs over U . More precisely,
write Ŵ (2k) = |Ŵ (2k)|eiβ(2k); we suppose that

sup
k,k′∈U

|β(2k)− β(2k′)| ≤ π/8.(27)

This, of course, can be ensured by taking U sufficiently small.
Next, we want to use Lemma 4.3 to construct appropriate probability measures

on U . Thus we need to specify the pn(t) from (25). To this end, first choose
t0(n) ∈ {0, 1, . . . , Nn − 1} such that∣∣∣∣2t0(n)π

Nn
+ β(2k) + π

∣∣∣∣ ≤ π

4
(28)

for all k ∈ U (the left-hand side of (28) is to be evaluated modulo 2π). This is
possible by (27), at least if we assume, without loss of generality, that Nn ≥ 8. We
choose the Nn as even numbers and set

pn(t0(n)) = . . . = pn(t0(n)− 1 +Nn/2) = 2/Nn,

and pn(t) = 0 otherwise. (In this definition, the argument of pn has to be evaluated
modulo Nn.) Now, Lemma 4.3 yields a probability measure P , such that the ψn
are independent with distributions determined by the pn(t), according to Lemma
4.3b).

We compute

E(e2iψn) =
2
Nn

t0(n)−1+Nn/2∑
t=t0(n)

e2πit/Nn = − 4
Nn

e2πit0(n)/Nn

e2πi/Nn − 1

=
2i
π
e2πit0(n)/Nn +O(N−1

n ).

Note that by (28), we have Im ie2πit0(n)/Nneiβ(2k) ≤ −1/
√

2 for all n ∈ N, k ∈ U .
Thus by combining Lemma 4.3c) and Lemma 4.4 we see that on a k-set of Hausdorff
dimension 1, the Prüfer radius R satisfies

lnRN+1(k) ≤ −c
N∑
n=1

gn(29)

for all large enough N ≥ N0 = N0(k). The constant c > 0 depends only on U . If
we consider the corresponding set of energies E = k2, we still have a set of Haus-
dorff dimension 1 because the map k → E = k2 is bi-Lipschitz on every compact
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subset of (0,∞). Recall that R is given by R(x, k)2 = vα(x, k)2 + v′α(x, k)2/k2 (cf.
Section 2) where vα is the generalized eigenfunction introduced at the beginning
of this section. Now let y be any solution of the Schrödinger equation (1) which is
linearly independent of vα(·, k), and let R̃2 = y2+y′2/k2 and ϕ̃ be the corresponding
Prüfer variables. Constancy of the Wronskian W (vα, y) = vαy

′ − v′αy yields
RR̃ sin(ϕ − ϕ̃) = w 6= 0, hence R̃ ≥ |w|/R. It is easy to see that for the po-
tentials under consideration, one has inequalities of the type ‖y‖2

x ≥ c
∫ x
0 R̃

2 (with
c > 0, of course) for all sufficiently large x. Hence (29) together with the estimate
R̃ ≥ |w|/R guarantee that the solution vα is subordinate. 2

The methods of this proof clearly extend to more general Hausdorff measures.
More specifically, let h(t) be an increasing, right continuous function on [0,∞) with
h(0) = 0 and h(t) > 0 for t > 0. Then one can define a (generalized) Hausdorff
measure µh (see [18, Section 2.1]; the details are not of interest here). The usual γ-
dimensional Hausdorff measures are obtained with the choice h(t) = tγ . Now only
a minor modification in the proof of Lemma 4.3c) is needed to prove the following
result: Let h be as above with limt→0+ h(t)/t = ∞. If the Ln grow sufficiently
rapidly (this condition can be put in a more quantitative version, of course), then
µh(Sα ∩U) = ∞ for all α and all open sets U ⊂ (0,∞). In fact, we even have that
Sα ∩ U is not σ-finite with respect to µh.

I do not think that this extension of Theorem 4.2 gives much additional insight,
but it does provide explicit examples where the set Sα is arbitrarily large in the
measure theoretic sense (given the restriction that |Sα| = 0).
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