Vaught’s conjecture and the Glimm-Effros property for Polish transformation groups
HTML articles powered by AMS MathViewer
- by Greg Hjorth and Slawomir Solecki
- Trans. Amer. Math. Soc. 351 (1999), 2623-2641
- DOI: https://doi.org/10.1090/S0002-9947-99-02141-8
- Published electronically: March 10, 1999
- PDF | Request permission
Abstract:
We extend the original Glimm-Effros theorem for locally compact groups to a class of Polish groups including the nilpotent ones and those with an invariant metric. For this class we thereby obtain the topological Vaught conjecture.References
- H. Becker, Vaught’s conjecture for complete left invariant Polish groups, handwritten notes, University of South Carolina, 1996.
- Miroslav Benda, Remarks on countable models, Fund. Math. 81 (1973/74), no. 2, 107–119. MR 371634, DOI 10.4064/fm-81-2-107-119
- Howard Becker and Alexander S. Kechris, Borel actions of Polish groups, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 334–341. MR 1185149, DOI 10.1090/S0273-0979-1993-00383-5
- Howard Becker and Alexander S. Kechris, The descriptive set theory of Polish group actions, London Mathematical Society Lecture Note Series, vol. 232, Cambridge University Press, Cambridge, 1996. MR 1425877, DOI 10.1017/CBO9780511735264
- C. C. Chang and H. J. Keisler, Model theory, Studies in Logic and the Foundations of Mathematics, Vol. 73, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. MR 0409165
- Edward G. Effros, Polish transformation groups and classification problems, General topology and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980) Academic Press, New York-London, 1981, pp. 217–227. MR 619045
- S. Gao, Automorphism groups of countable structures, Journal of Symbolic Logic, vol. 63 (1998), pp. 891–896.
- James Glimm, Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961), 124–138. MR 136681, DOI 10.1090/S0002-9947-1961-0136681-X
- A. Grzegorczyk, A. Mostowski, and C. Ryll-Nardzewski, Definability of sets in models of axiomatic theories, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 163–167. MR 163839
- Leo Harrington, Analytic determinacy and $0^{\sharp }$, J. Symbolic Logic 43 (1978), no. 4, 685–693. MR 518675, DOI 10.2307/2273508
- L. A. Harrington, A. S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), no. 4, 903–928. MR 1057041, DOI 10.1090/S0894-0347-1990-1057041-5
- L. Harrington and R. Sami, Equivalence relations, projective and beyond, Logic Colloquium ’78 (Mons, 1978) Studies in Logic and the Foundations of Mathematics, vol. 97, North-Holland, Amsterdam-New York, 1979, pp. 247–264. MR 567673
- G. Hjorth, Orbit cardinals, preprint, UCLA, 1996.
- Greg Hjorth and Alexander S. Kechris, Analytic equivalence relations and Ulm-type classifications, J. Symbolic Logic 60 (1995), no. 4, 1273–1300. MR 1367210, DOI 10.2307/2275888
- G. Hjorth, A.S. Kechris, and A. Louvaeu, Borel equivalence relations induced by actions of the symmetric group, Annals of Pure and Applied Logic, vol. 92 (1998), pp. 63–112.
- Alessandro Panconesi and Aravind Srinivasan, The local nature of $\Delta$-coloring and its algorithmic applications, Combinatorica 15 (1995), no. 2, 255–280. MR 1337357, DOI 10.1007/BF01200759
- A. S. Kechris, Lectures on definable group actions and equivalence relations, unpublished manuscript, Los Angeles, 1994.
- Arnold W. Miller, On the Borel classification of the isomorphism class of a countable model, Notre Dame J. Formal Logic 24 (1983), no. 1, 22–34. MR 675914
- Douglas E. Miller, On the measurability of orbits in Borel actions, Proc. Amer. Math. Soc. 63 (1977), no. 1, 165–170. MR 440519, DOI 10.1090/S0002-9939-1977-0440519-8
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
- Ramez L. Sami, Polish group actions and the Vaught conjecture, Trans. Amer. Math. Soc. 341 (1994), no. 1, 335–353. MR 1022169, DOI 10.1090/S0002-9947-1994-1022169-2
- Jack H. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic 18 (1980), no. 1, 1–28. MR 568914, DOI 10.1016/0003-4843(80)90002-9
- Sławomir Solecki, Equivalence relations induced by actions of Polish groups, Trans. Amer. Math. Soc. 347 (1995), no. 12, 4765–4777. MR 1311918, DOI 10.1090/S0002-9947-1995-1311918-2
- Robert Vaught, Invariant sets in topology and logic, Fund. Math. 82 (1974/75), 269–294. MR 363912, DOI 10.4064/fm-82-3-269-294
Bibliographic Information
- Greg Hjorth
- Affiliation: Department of Mathematics, 253–37, California Institute of Technology, Pasadena, California 91125
- Address at time of publication: Department of Mathematics, MSB 6363, University of California, Los Angeles, California 90095-1555
- Email: greg@math.ucla.edu
- Slawomir Solecki
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
- Email: ssolecki@indiana.edu
- Received by editor(s): August 18, 1995
- Received by editor(s) in revised form: June 16, 1997
- Published electronically: March 10, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 2623-2641
- MSC (1991): Primary 04A15
- DOI: https://doi.org/10.1090/S0002-9947-99-02141-8
- MathSciNet review: 1467467