## Vaught’s conjecture and the Glimm-Effros property for Polish transformation groups

HTML articles powered by AMS MathViewer

- by Greg Hjorth and Slawomir Solecki PDF
- Trans. Amer. Math. Soc.
**351**(1999), 2623-2641 Request permission

## Abstract:

We extend the original Glimm-Effros theorem for locally compact groups to a class of Polish groups including the nilpotent ones and those with an invariant metric. For this class we thereby obtain the topological Vaught conjecture.## References

- H. Becker,
*Vaught’s conjecture for complete left invariant Polish groups*, handwritten notes, University of South Carolina, 1996. - Miroslav Benda,
*Remarks on countable models*, Fund. Math.**81**(1973/74), no. 2, 107–119. MR**371634**, DOI 10.4064/fm-81-2-107-119 - Howard Becker and Alexander S. Kechris,
*Borel actions of Polish groups*, Bull. Amer. Math. Soc. (N.S.)**28**(1993), no. 2, 334–341. MR**1185149**, DOI 10.1090/S0273-0979-1993-00383-5 - Howard Becker and Alexander S. Kechris,
*The descriptive set theory of Polish group actions*, London Mathematical Society Lecture Note Series, vol. 232, Cambridge University Press, Cambridge, 1996. MR**1425877**, DOI 10.1017/CBO9780511735264 - C. C. Chang and H. J. Keisler,
*Model theory*, Studies in Logic and the Foundations of Mathematics, Vol. 73, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. MR**0409165** - Edward G. Effros,
*Polish transformation groups and classification problems*, General topology and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980) Academic Press, New York-London, 1981, pp. 217–227. MR**619045** - S. Gao, Automorphism groups of countable structures, Journal of Symbolic Logic, vol. 63 (1998), pp. 891–896.
- James Glimm,
*Locally compact transformation groups*, Trans. Amer. Math. Soc.**101**(1961), 124–138. MR**136681**, DOI 10.1090/S0002-9947-1961-0136681-X - A. Grzegorczyk, A. Mostowski, and C. Ryll-Nardzewski,
*Definability of sets in models of axiomatic theories*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**9**(1961), 163–167. MR**163839** - Leo Harrington,
*Analytic determinacy and $0^{\sharp }$*, J. Symbolic Logic**43**(1978), no. 4, 685–693. MR**518675**, DOI 10.2307/2273508 - L. A. Harrington, A. S. Kechris, and A. Louveau,
*A Glimm-Effros dichotomy for Borel equivalence relations*, J. Amer. Math. Soc.**3**(1990), no. 4, 903–928. MR**1057041**, DOI 10.1090/S0894-0347-1990-1057041-5 - L. Harrington and R. Sami,
*Equivalence relations, projective and beyond*, Logic Colloquium ’78 (Mons, 1978) Studies in Logic and the Foundations of Mathematics, vol. 97, North-Holland, Amsterdam-New York, 1979, pp. 247–264. MR**567673** - G. Hjorth,
*Orbit cardinals*, preprint, UCLA, 1996. - Greg Hjorth and Alexander S. Kechris,
*Analytic equivalence relations and Ulm-type classifications*, J. Symbolic Logic**60**(1995), no. 4, 1273–1300. MR**1367210**, DOI 10.2307/2275888 - G. Hjorth, A.S. Kechris, and A. Louvaeu,
*Borel equivalence relations induced by actions of the symmetric group*, Annals of Pure and Applied Logic, vol. 92 (1998), pp. 63–112. - Alessandro Panconesi and Aravind Srinivasan,
*The local nature of $\Delta$-coloring and its algorithmic applications*, Combinatorica**15**(1995), no. 2, 255–280. MR**1337357**, DOI 10.1007/BF01200759 - A. S. Kechris,
*Lectures on definable group actions and equivalence relations*, unpublished manuscript, Los Angeles, 1994. - Arnold W. Miller,
*On the Borel classification of the isomorphism class of a countable model*, Notre Dame J. Formal Logic**24**(1983), no. 1, 22–34. MR**675914** - Douglas E. Miller,
*On the measurability of orbits in Borel actions*, Proc. Amer. Math. Soc.**63**(1977), no. 1, 165–170. MR**440519**, DOI 10.1090/S0002-9939-1977-0440519-8 - Yiannis N. Moschovakis,
*Descriptive set theory*, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR**561709** - Ramez L. Sami,
*Polish group actions and the Vaught conjecture*, Trans. Amer. Math. Soc.**341**(1994), no. 1, 335–353. MR**1022169**, DOI 10.1090/S0002-9947-1994-1022169-2 - Jack H. Silver,
*Counting the number of equivalence classes of Borel and coanalytic equivalence relations*, Ann. Math. Logic**18**(1980), no. 1, 1–28. MR**568914**, DOI 10.1016/0003-4843(80)90002-9 - Sławomir Solecki,
*Equivalence relations induced by actions of Polish groups*, Trans. Amer. Math. Soc.**347**(1995), no. 12, 4765–4777. MR**1311918**, DOI 10.1090/S0002-9947-1995-1311918-2 - Robert Vaught,
*Invariant sets in topology and logic*, Fund. Math.**82**(1974/75), 269–294. MR**363912**, DOI 10.4064/fm-82-3-269-294

## Additional Information

**Greg Hjorth**- Affiliation: Department of Mathematics, 253–37, California Institute of Technology, Pasadena, California 91125
- Address at time of publication: Department of Mathematics, MSB 6363, University of California, Los Angeles, California 90095-1555
- Email: greg@math.ucla.edu
**Slawomir Solecki**- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
- Email: ssolecki@indiana.edu
- Received by editor(s): August 18, 1995
- Received by editor(s) in revised form: June 16, 1997
- Published electronically: March 10, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**351**(1999), 2623-2641 - MSC (1991): Primary 04A15
- DOI: https://doi.org/10.1090/S0002-9947-99-02141-8
- MathSciNet review: 1467467