Bourgin-Yang type theorem and its application to $Z_2$-equivariant Hamiltonian systems
HTML articles powered by AMS MathViewer
- by Marek Izydorek
- Trans. Amer. Math. Soc. 351 (1999), 2807-2831
- DOI: https://doi.org/10.1090/S0002-9947-99-02144-3
- Published electronically: February 24, 1999
- PDF | Request permission
Abstract:
We will be concerned with the existence of multiple periodic solutions of asymptotically linear Hamiltonian systems with the presence of $Z_2$–action. To that purpose we prove a new version of the Bourgin–Yang theorem. Using the notion of the crossing number we also introduce a new definition of the Morse index for indefinite functionals.References
- H. Amann and E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), no. 4, 539–603. MR 600524
- Herbert Amann and Eduard Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math. 32 (1980), no. 1-2, 149–189. MR 592715, DOI 10.1007/BF01298187
- Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381. MR 0370183, DOI 10.1016/0022-1236(73)90051-7
- Vieri Benci, A new approach to the Morse-Conley theory and some applications, Ann. Mat. Pura Appl. (4) 158 (1991), 231–305. MR 1131853, DOI 10.1007/BF01759307
- Vieri Benci, Introduction to Morse theory: a new approach, Topological nonlinear analysis, Progr. Nonlinear Differential Equations Appl., vol. 15, Birkhäuser Boston, Boston, MA, 1995, pp. 37–177. MR 1322324
- Vieri Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc. 274 (1982), no. 2, 533–572. MR 675067, DOI 10.1090/S0002-9947-1982-0675067-X
- Kung-ching Chang, Infinite-dimensional Morse theory and multiple solution problems, Progress in Nonlinear Differential Equations and their Applications, vol. 6, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1196690, DOI 10.1007/978-1-4612-0385-8
- Kung Ching Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math. 34 (1981), no. 5, 693–712. MR 622618, DOI 10.1002/cpa.3160340503
- David C. Clark, A variant of the Lusternik-Schnirelman theory, Indiana Univ. Math. J. 22 (1972/73), 65–74. MR 296777, DOI 10.1512/iumj.1972.22.22008
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133, DOI 10.1090/cbms/038
- Charles Conley and Eduard Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), no. 2, 207–253. MR 733717, DOI 10.1002/cpa.3160370204
- James Dugundji and Andrzej Granas, Fixed point theory. I, Monografie Matematyczne [Mathematical Monographs], vol. 61, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1982. MR 660439
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- I. Ekeland, An index theory for periodic solutions of convex Hamiltonian systems, Nonlinear functional analysis and its applications, Part 1 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 395–423. MR 843575, DOI 10.1090/pspum/045.1/843575
- Gui Hua Fei, Maslov-type index and periodic solution of asymptotically linear Hamiltonian systems which are resonant at infinity, J. Differential Equations 121 (1995), no. 1, 121–133. MR 1348538, DOI 10.1006/jdeq.1995.1124
- Gui Hua Fei, Relative Morse index and its application to Hamiltonian systems in the presence of symmetries, J. Differential Equations 122 (1995), no. 2, 302–315. MR 1355894, DOI 10.1006/jdeq.1995.1150
- A. Granas, An extension to functional spaces of Borsuk-Ulam theorem on antipodes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 80–86. MR 138977
- Shu Jie Li and J. Q. Liu, Morse theory and asymptotic linear Hamiltonian system, J. Differential Equations 78 (1989), no. 1, 53–73. MR 986153, DOI 10.1016/0022-0396(89)90075-2
- Y. Long, The Index Theory of Hamiltonian Systems with Applications, Science Press, Beijing, (1993).
- Yi Ming Long, Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems, Sci. China Ser. A 33 (1990), no. 12, 1409–1419. MR 1090484
- Yi Ming Long and Eduard Zehnder, Morse-theory for forced oscillations of asymptotically linear Hamiltonian systems, Stochastic processes, physics and geometry (Ascona and Locarno, 1988) World Sci. Publ., Teaneck, NJ, 1990, pp. 528–563. MR 1124230
- Jean Mawhin and Michel Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, vol. 74, Springer-Verlag, New York, 1989. MR 982267, DOI 10.1007/978-1-4757-2061-7
- Paul H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 845785, DOI 10.1090/cbms/065
- Andrzej Szulkin, Cohomology and Morse theory for strongly indefinite functionals, Math. Z. 209 (1992), no. 3, 375–418. MR 1152264, DOI 10.1007/BF02570842
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
Bibliographic Information
- Marek Izydorek
- Affiliation: Department of Technical Physics and Applied Mathematics, Technical University of Gdańsk, 80-952 Gdańsk, ul. Gabriela Narutowicza 11/12, Poland
- Email: izydorek@mifgate.gda.pl
- Received by editor(s): January 9, 1996
- Received by editor(s) in revised form: March 7, 1997
- Published electronically: February 24, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 2807-2831
- MSC (1991): Primary 58E05, 55M20; Secondary 34C25, 34C35
- DOI: https://doi.org/10.1090/S0002-9947-99-02144-3
- MathSciNet review: 1467470