## Bourgin-Yang type theorem and its application to $Z_2$-equivariant Hamiltonian systems

HTML articles powered by AMS MathViewer

- by Marek Izydorek PDF
- Trans. Amer. Math. Soc.
**351**(1999), 2807-2831 Request permission

## Abstract:

We will be concerned with the existence of multiple periodic solutions of asymptotically linear Hamiltonian systems with the presence of $Z_2$–action. To that purpose we prove a new version of the Bourgin–Yang theorem. Using the notion of the crossing number we also introduce a new definition of the Morse index for indefinite functionals.## References

- H. Amann and E. Zehnder,
*Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**7**(1980), no. 4, 539–603. MR**600524** - Herbert Amann and Eduard Zehnder,
*Periodic solutions of asymptotically linear Hamiltonian systems*, Manuscripta Math.**32**(1980), no. 1-2, 149–189. MR**592715**, DOI 10.1007/BF01298187 - Antonio Ambrosetti and Paul H. Rabinowitz,
*Dual variational methods in critical point theory and applications*, J. Functional Analysis**14**(1973), 349–381. MR**0370183**, DOI 10.1016/0022-1236(73)90051-7 - Vieri Benci,
*A new approach to the Morse-Conley theory and some applications*, Ann. Mat. Pura Appl. (4)**158**(1991), 231–305. MR**1131853**, DOI 10.1007/BF01759307 - Vieri Benci,
*Introduction to Morse theory: a new approach*, Topological nonlinear analysis, Progr. Nonlinear Differential Equations Appl., vol. 15, Birkhäuser Boston, Boston, MA, 1995, pp. 37–177. MR**1322324** - Vieri Benci,
*On critical point theory for indefinite functionals in the presence of symmetries*, Trans. Amer. Math. Soc.**274**(1982), no. 2, 533–572. MR**675067**, DOI 10.1090/S0002-9947-1982-0675067-X - Kung-ching Chang,
*Infinite-dimensional Morse theory and multiple solution problems*, Progress in Nonlinear Differential Equations and their Applications, vol. 6, Birkhäuser Boston, Inc., Boston, MA, 1993. MR**1196690**, DOI 10.1007/978-1-4612-0385-8 - Kung Ching Chang,
*Solutions of asymptotically linear operator equations via Morse theory*, Comm. Pure Appl. Math.**34**(1981), no. 5, 693–712. MR**622618**, DOI 10.1002/cpa.3160340503 - David C. Clark,
*A variant of the Lusternik-Schnirelman theory*, Indiana Univ. Math. J.**22**(1972/73), 65–74. MR**296777**, DOI 10.1512/iumj.1972.22.22008 - Charles Conley,
*Isolated invariant sets and the Morse index*, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR**511133**, DOI 10.1090/cbms/038 - Charles Conley and Eduard Zehnder,
*Morse-type index theory for flows and periodic solutions for Hamiltonian equations*, Comm. Pure Appl. Math.**37**(1984), no. 2, 207–253. MR**733717**, DOI 10.1002/cpa.3160370204 - James Dugundji and Andrzej Granas,
*Fixed point theory. I*, Monografie Matematyczne [Mathematical Monographs], vol. 61, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1982. MR**660439** - C. J. Everett Jr.,
*Annihilator ideals and representation iteration for abstract rings*, Duke Math. J.**5**(1939), 623–627. MR**13** - I. Ekeland,
*An index theory for periodic solutions of convex Hamiltonian systems*, Nonlinear functional analysis and its applications, Part 1 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 395–423. MR**843575**, DOI 10.1016/0034-4877(85)90033-3 - Gui Hua Fei,
*Maslov-type index and periodic solution of asymptotically linear Hamiltonian systems which are resonant at infinity*, J. Differential Equations**121**(1995), no. 1, 121–133. MR**1348538**, DOI 10.1006/jdeq.1995.1124 - Gui Hua Fei,
*Relative Morse index and its application to Hamiltonian systems in the presence of symmetries*, J. Differential Equations**122**(1995), no. 2, 302–315. MR**1355894**, DOI 10.1006/jdeq.1995.1150 - A. Granas,
*An extension to functional spaces of Borsuk-Ulam theorem on antipodes*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**10**(1962), 80–86. MR**138977** - Shu Jie Li and J. Q. Liu,
*Morse theory and asymptotic linear Hamiltonian system*, J. Differential Equations**78**(1989), no. 1, 53–73. MR**986153**, DOI 10.1016/0022-0396(89)90075-2 - Y. Long,
*The Index Theory of Hamiltonian Systems with Applications*, Science Press, Beijing, (1993). - Yi Ming Long,
*Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems*, Sci. China Ser. A**33**(1990), no. 12, 1409–1419. MR**1090484** - Yi Ming Long and Eduard Zehnder,
*Morse-theory for forced oscillations of asymptotically linear Hamiltonian systems*, Stochastic processes, physics and geometry (Ascona and Locarno, 1988) World Sci. Publ., Teaneck, NJ, 1990, pp. 528–563. MR**1124230** - Jean Mawhin and Michel Willem,
*Critical point theory and Hamiltonian systems*, Applied Mathematical Sciences, vol. 74, Springer-Verlag, New York, 1989. MR**982267**, DOI 10.1007/978-1-4757-2061-7 - Paul H. Rabinowitz,
*Minimax methods in critical point theory with applications to differential equations*, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR**845785**, DOI 10.1090/cbms/065 - Andrzej Szulkin,
*Cohomology and Morse theory for strongly indefinite functionals*, Math. Z.**209**(1992), no. 3, 375–418. MR**1152264**, DOI 10.1007/BF02570842 - Tadasi Nakayama,
*On Frobeniusean algebras. I*, Ann. of Math. (2)**40**(1939), 611–633. MR**16**, DOI 10.2307/1968946

## Additional Information

**Marek Izydorek**- Affiliation: Department of Technical Physics and Applied Mathematics, Technical University of Gdańsk, 80-952 Gdańsk, ul. Gabriela Narutowicza 11/12, Poland
- Email: izydorek@mifgate.gda.pl
- Received by editor(s): January 9, 1996
- Received by editor(s) in revised form: March 7, 1997
- Published electronically: February 24, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**351**(1999), 2807-2831 - MSC (1991): Primary 58E05, 55M20; Secondary 34C25, 34C35
- DOI: https://doi.org/10.1090/S0002-9947-99-02144-3
- MathSciNet review: 1467470