Partial subdifferentials, derivates and Rademacher's Theorem
Authors:
D. N. Bessis and F. H. Clarke
Journal:
Trans. Amer. Math. Soc. 351 (1999), 2899-2926
MSC (1991):
Primary 26E99; Secondary 46G05, 49J50, 58B10.
DOI:
https://doi.org/10.1090/S0002-9947-99-02203-5
Published electronically:
March 10, 1999
MathSciNet review:
1475676
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, we present new partial subdifferentiation formulas in nonsmooth analysis, based upon the study of two directional derivatives. Simple applications of these formulas include a new elementary proof of Rademacher's Theorem in , as well as some results on Gâteaux and Fréchet differentiability for locally Lipschitz functions in a separable Hilbert space.
RÉSUMÉ. Dans cet article, nous présentons de nouvelles formules de sousdifférentiation partielle en analyse nonlisse, basées sur l'étude de deux dérivées directionnelles. Une simple application de ces formules nous permet d'obtenir une nouvelle preuve élémentaire du théorème de Rademacher dans , ainsi que certains résultats sur la différentiabilité Gâteaux ou Fréchet des fonctions localement Lipschitz sur un espace de Hilbert séparable.
- 1. N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), no. 2, 147–190. MR 425608, https://doi.org/10.4064/sm-57-2-147-190
- 2. Bessis D.N., Analyse contingentielle et sousdifférentielle, PhD thesis, Université de Montréal, 1997.
- 3. J. M. Borwein and H. M. Strójwas, Proximal analysis and boundaries of closed sets in Banach space. II. Applications, Canad. J. Math. 39 (1987), no. 2, 428–472. MR 899844, https://doi.org/10.4153/CJM-1987-019-4
- 4. Andrew Bruckner, Differentiation of real functions, 2nd ed., CRM Monograph Series, vol. 5, American Mathematical Society, Providence, RI, 1994. MR 1274044
- 5. Gustave Choquet, Outils topologiques et métriques de l’analyse mathématique, Cours rédigé par Claude Mayer, Centre de Documentation Universitaire, Paris, 1969 (French). MR 0262426
- 6. Frank H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247–262. MR 367131, https://doi.org/10.1090/S0002-9947-1975-0367131-6
- 7. F. H. Clarke, Optimization and nonsmooth analysis, 2nd ed., Classics in Applied Mathematics, vol. 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. MR 1058436
- 8. Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R., Nonsmooth analysis and optimal control, to be published in Graduate Texts in Mathematics, Springer-Verlag. CMP 98:06
- 9. F. H. Clarke, Yu. S. Ledyaev, and P. R. Wolenski, Proximal analysis and minimization principles, J. Math. Anal. Appl. 196 (1995), no. 2, 722–735. MR 1362717, https://doi.org/10.1006/jmaa.1995.1436
- 10. E. P. Dolženko, Boundary properties of arbitrary functions, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 3–14 (Russian). MR 0217297
- 11. M. Fabián and D. Preiss, On intermediate differentiability of Lipschitz functions on certain Banach spaces, Proc. Amer. Math. Soc. 113 (1991), no. 3, 733–740. MR 1074753, https://doi.org/10.1090/S0002-9939-1991-1074753-0
- 12. Halmos P.R., Measure Theory, D.Van Nostrand Company, Inc., New York, 1986. MR 11:504d
- 13. J. R. Giles and Scott Sciffer, Locally Lipschitz functions are generically pseudo-regular on separable Banach spaces, Bull. Austral. Math. Soc. 47 (1993), no. 2, 205–212. MR 1210135, https://doi.org/10.1017/S0004972700012430
- 14. K. Kuratowski, Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. MR 0217751
- 15. Jaroslav Lukeš, Jan Malý, and Luděk Zajíček, Fine topology methods in real analysis and potential theory, Lecture Notes in Mathematics, vol. 1189, Springer-Verlag, Berlin, 1986. MR 861411
- 16. F. Mignot, Contrôle dans les inéquations variationelles elliptiques, J. Functional Analysis 22 (1976), no. 2, 130–185 (French). MR 0423155, https://doi.org/10.1016/0022-1236(76)90017-3
- 17. de Mises M.R., La base géométrique du théorème de M. Mandelbrojt sur les points singuliers d'une fonction analytique, C.R. Acad. Sci. Paris Sér. I Math. 205 (1937), 1353-1355.
- 18. Aleš Nekvinda and Luděk Zajíček, A simple proof of the Rademacher theorem, Časopis Pěst. Mat. 113 (1988), no. 4, 337–341 (English, with Russian and Czech summaries). MR 981874
- 19. Robert R. Phelps, Convex functions, monotone operators and differentiability, 2nd ed., Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1993. MR 1238715
- 20. R. R. Phelps, Gaussian null sets and differentiability of Lipschitz map on Banach spaces, Pacific J. Math. 77 (1978), no. 2, 523–531. MR 510938
- 21. D. Preiss, Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal. 91 (1990), no. 2, 312–345. MR 1058975, https://doi.org/10.1016/0022-1236(90)90147-D
- 22. David Preiss, Gâteaux differentiable Lipschitz functions need not be Fréchet differentiable on a residual subset, Rend. Circ. Mat. Palermo (2) Suppl, Suppl. No. 2 (1982), 217–222. MR 683783
- 23. Rademacher H., Über partielle und totale Differenzierbarkeit I., Math. Ann. 89 (1919), 340-359.
- 24. Jean Saint-Pierre, Sur le théorème de Rademacher, Travaux Sém. Anal. Convexe 12 (1982), no. 1, exp. no. 2, 10 (French). MR 683553
- 25. Stanisław Saks, Theory of the integral, Second revised edition. English translation by L. C. Young. With two additional notes by Stefan Banach, Dover Publications, Inc., New York, 1964. MR 0167578
- 26. Shu Zhong Shi, Choquet theorem and nonsmooth analysis, J. Math. Pures Appl. (9) 67 (1988), no. 4, 411–432. MR 978579
- 27. Shu Zhong Shi, Différentiabilité d’une fonction localement lipschitzienne dans un espace de Banach séparable, J. Systems Sci. Math. Sci. 3 (1983), no. 2, 112–119 (French, with Chinese summary). MR 887635
- 28. Luděk Zajíček, Differentiability of the distance function and points of multivaluedness of the metric projection in Banach space, Czechoslovak Math. J. 33(108) (1983), no. 2, 292–308. MR 699027
- 29. Luděk Zajíček, Sets of 𝜎-porosity and sets of 𝜎-porosity (𝑞), Časopis Pěst. Mat. 101 (1976), no. 4, 350–359 (English, with Loose Russian summary). MR 0457731
Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 26E99, 46G05, 49J50, 58B10.
Retrieve articles in all journals with MSC (1991): 26E99, 46G05, 49J50, 58B10.
Additional Information
D. N. Bessis
Affiliation:
Centre for Process Systems Engineering, Imperial College of Science, Technology and Medicine, Exhibition Road, London, United Kingdom, SW7 2AZ
Email:
d.bessis@ic.ac.uk
F. H. Clarke
Affiliation:
Mathématiques, Université de Lyon I, 69622 Villeurbanne, France, and Centre de Recherches Mathématiques, Université de Montréal, C. P. 6128, Succ. Centre-ville, Montréal, Québec, Canada, H3C 3J7
Email:
clarke@crm.umontreal.ca
DOI:
https://doi.org/10.1090/S0002-9947-99-02203-5
Keywords:
Nonsmooth analysis,
locally Lipschitz functions,
directional derivates,
partial subdifferentials,
G\^{a}teaux and Fr\'{e}chet derivatives.
Received by editor(s):
February 2, 1997
Published electronically:
March 10, 1999
Additional Notes:
We gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada, and of le Fonds FCAR du Québec
Article copyright:
© Copyright 1999
American Mathematical Society