Partial subdifferentials, derivates and Rademacher’s Theorem
HTML articles powered by AMS MathViewer
- by D. N. Bessis and F. H. Clarke
- Trans. Amer. Math. Soc. 351 (1999), 2899-2926
- DOI: https://doi.org/10.1090/S0002-9947-99-02203-5
- Published electronically: March 10, 1999
- PDF | Request permission
Abstract:
In this paper, we present new partial subdifferentiation formulas in nonsmooth analysis, based upon the study of two directional derivatives. Simple applications of these formulas include a new elementary proof of Rademacher’s Theorem in ${\mathbb R}^n$, as well as some results on Gâteaux and Fréchet differentiability for locally Lipschitz functions in a separable Hilbert space. Résumé. Dans cet article, nous présentons de nouvelles formules de sousdifférentiation partielle en analyse nonlisse, basées sur l’étude de deux dérivées directionnelles. Une simple application de ces formules nous permet d’obtenir une nouvelle preuve élémentaire du théorème de Rademacher dans ${\mathbb R}^{n}$, ainsi que certains résultats sur la différentiabilité Gâteaux ou Fréchet des fonctions localement Lipschitz sur un espace de Hilbert séparable.References
- N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), no. 2, 147–190. MR 425608, DOI 10.4064/sm-57-2-147-190
- Bessis D.N., Analyse contingentielle et sousdifférentielle, PhD thesis, Université de Montréal, 1997.
- J. M. Borwein and H. M. Strójwas, Proximal analysis and boundaries of closed sets in Banach space. II. Applications, Canad. J. Math. 39 (1987), no. 2, 428–472. MR 899844, DOI 10.4153/CJM-1987-019-4
- Andrew Bruckner, Differentiation of real functions, 2nd ed., CRM Monograph Series, vol. 5, American Mathematical Society, Providence, RI, 1994. MR 1274044, DOI 10.1090/crmm/005
- Gustave Choquet, Outils topologiques et métriques de l’analyse mathématique, Centre de Documentation Universitaire, Paris, 1969 (French). Cours rédigé par Claude Mayer. MR 0262426
- Frank H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247–262. MR 367131, DOI 10.1090/S0002-9947-1975-0367131-6
- F. H. Clarke, Optimization and nonsmooth analysis, 2nd ed., Classics in Applied Mathematics, vol. 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. MR 1058436, DOI 10.1137/1.9781611971309
- Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R., Nonsmooth analysis and optimal control, to be published in Graduate Texts in Mathematics, Springer-Verlag.
- F. H. Clarke, Yu. S. Ledyaev, and P. R. Wolenski, Proximal analysis and minimization principles, J. Math. Anal. Appl. 196 (1995), no. 2, 722–735. MR 1362717, DOI 10.1006/jmaa.1995.1436
- E. P. Dolženko, Boundary properties of arbitrary functions, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 3–14 (Russian). MR 0217297
- M. Fabián and D. Preiss, On intermediate differentiability of Lipschitz functions on certain Banach spaces, Proc. Amer. Math. Soc. 113 (1991), no. 3, 733–740. MR 1074753, DOI 10.1090/S0002-9939-1991-1074753-0
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- J. R. Giles and Scott Sciffer, Locally Lipschitz functions are generically pseudo-regular on separable Banach spaces, Bull. Austral. Math. Soc. 47 (1993), no. 2, 205–212. MR 1210135, DOI 10.1017/S0004972700012430
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- Jaroslav Lukeš, Jan Malý, and Luděk Zajíček, Fine topology methods in real analysis and potential theory, Lecture Notes in Mathematics, vol. 1189, Springer-Verlag, Berlin, 1986. MR 861411, DOI 10.1007/BFb0075894
- F. Mignot, Contrôle dans les inéquations variationelles elliptiques, J. Functional Analysis 22 (1976), no. 2, 130–185 (French). MR 0423155, DOI 10.1016/0022-1236(76)90017-3
- de Mises M.R., La base géométrique du théorème de M. Mandelbrojt sur les points singuliers d’une fonction analytique, C.R. Acad. Sci. Paris Sér. I Math. 205 (1937), 1353–1355.
- Aleš Nekvinda and Luděk Zajíček, A simple proof of the Rademacher theorem, Časopis Pěst. Mat. 113 (1988), no. 4, 337–341 (English, with Russian and Czech summaries). MR 981874, DOI 10.21136/CPM.1988.118346
- Robert R. Phelps, Convex functions, monotone operators and differentiability, 2nd ed., Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1993. MR 1238715
- R. R. Phelps, Gaussian null sets and differentiability of Lipschitz map on Banach spaces, Pacific J. Math. 77 (1978), no. 2, 523–531. MR 510938, DOI 10.2140/pjm.1978.77.523
- D. Preiss, Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal. 91 (1990), no. 2, 312–345. MR 1058975, DOI 10.1016/0022-1236(90)90147-D
- David Preiss, Gâteaux differentiable Lipschitz functions need not be Fréchet differentiable on a residual subset, Rend. Circ. Mat. Palermo (2) Suppl. 2 (1982), 217–222. MR 683783
- Rademacher H., Über partielle und totale Differenzierbarkeit I., Math. Ann. 89 (1919), 340–359.
- Jean Saint-Pierre, Sur le théorème de Rademacher, Travaux Sém. Anal. Convexe 12 (1982), no. 1, exp. no. 2, 10 (French). MR 683553
- Stanisław Saks, Theory of the integral, Second revised edition, Dover Publications, Inc., New York, 1964. English translation by L. C. Young; With two additional notes by Stefan Banach. MR 0167578
- Shu Zhong Shi, Choquet theorem and nonsmooth analysis, J. Math. Pures Appl. (9) 67 (1988), no. 4, 411–432. MR 978579
- Shu Zhong Shi, Différentiabilité d’une fonction localement lipschitzienne dans un espace de Banach séparable, J. Systems Sci. Math. Sci. 3 (1983), no. 2, 112–119 (French, with Chinese summary). MR 887635
- Luděk Zajíček, Differentiability of the distance function and points of multivaluedness of the metric projection in Banach space, Czechoslovak Math. J. 33(108) (1983), no. 2, 292–308. MR 699027, DOI 10.21136/CMJ.1983.101878
- Luděk Zajíček, Sets of $\sigma$-porosity and sets of $\sigma$-porosity $(q)$, Časopis Pěst. Mat. 101 (1976), no. 4, 350–359 (English, with Russian summary). MR 0457731, DOI 10.21136/CPM.1976.117931
Bibliographic Information
- D. N. Bessis
- Affiliation: Centre for Process Systems Engineering, Imperial College of Science, Technology and Medicine, Exhibition Road, London, United Kingdom, SW7 2AZ
- Email: d.bessis@ic.ac.uk
- F. H. Clarke
- Affiliation: Mathématiques, Université de Lyon I, 69622 Villeurbanne, France, and Centre de Recherches Mathématiques, Université de Montréal, C. P. 6128, Succ. Centre-ville, Montréal, Québec, Canada, H3C 3J7
- Email: clarke@crm.umontreal.ca
- Received by editor(s): February 2, 1997
- Published electronically: March 10, 1999
- Additional Notes: We gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada, and of le Fonds FCAR du Québec
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 2899-2926
- MSC (1991): Primary 26E99; Secondary 46G05, 49J50, 58B10
- DOI: https://doi.org/10.1090/S0002-9947-99-02203-5
- MathSciNet review: 1475676