The Quantum Cohomology Ring of Flag Varieties
HTML articles powered by AMS MathViewer
- by Ionuţ Ciocan-Fontanine
- Trans. Amer. Math. Soc. 351 (1999), 2695-2729
- DOI: https://doi.org/10.1090/S0002-9947-99-02230-8
- Published electronically: February 5, 1999
- PDF | Request permission
Abstract:
We describe the small quantum cohomology ring of complete flag varieties by algebro-geometric methods, as presented in our previous work Quantum cohomology of flag varieties (Internat. Math. Res. Notices, no. 6 (1995), 263–277). We also give a geometric proof of the quantum Monk formula.References
- V.V. Batyrev, Quantum cohomology rings of toric varieties, Astérisque 218 (1991), 9-34.
- K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127(3) (1997), 601-617.
- K. Behrend and Y. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. Journal 85 (1996), 1-60.
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Schubert cells, and the cohomology of the spaces $G/P$, Uspehi Mat. Nauk 28 (1973), no. 3(171), 3–26 (Russian). MR 0429933
- Aaron Bertram, Towards a Schubert calculus for maps from a Riemann surface to a Grassmannian, Internat. J. Math. 5 (1994), no. 6, 811–825. MR 1298995, DOI 10.1142/S0129167X94000401
- —, Quantum Schubert calculus, Adv. Math. (to appear).
- Aaron Bertram, Georgios Daskalopoulos, and Richard Wentworth, Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc. 9 (1996), no. 2, 529–571. MR 1320154, DOI 10.1090/S0894-0347-96-00190-7
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Ionuţ Ciocan-Fontanine, Quantum cohomology of flag varieties, Internat. Math. Res. Notices 6 (1995), 263–277. MR 1344348, DOI 10.1155/S1073792895000213
- —, The quantum cohomology ring of flag varieties, University of Utah Ph.D.Thesis (1996).
- Bruce Crauder and Rick Miranda, Quantum cohomology of rational surfaces, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 33–80. MR 1363053, DOI 10.1007/978-1-4612-4264-2_{3}
- Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88 (French). MR 354697, DOI 10.24033/asens.1261
- C. Ehresmann, Sur la topologie des certaines espaces homogènes, Ann. of Math. 35 (1934), 396-443.
- Sergey Fomin, Sergei Gelfand, and Alexander Postnikov, Quantum Schubert polynomials, J. Amer. Math. Soc. 10 (1997), no. 3, 565–596. MR 1431829, DOI 10.1090/S0894-0347-97-00237-3
- William Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J. 65 (1992), no. 3, 381–420. MR 1154177, DOI 10.1215/S0012-7094-92-06516-1
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, in Proceedings of the 1995 AMS Summer Institute in Santa Cruz (to appear).
- Alexander B. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices 13 (1996), 613–663. MR 1408320, DOI 10.1155/S1073792896000414
- Alexander Givental and Bumsig Kim, Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys. 168 (1995), no. 3, 609–641. MR 1328256, DOI 10.1007/BF02101846
- A. Grothendieck, Techniques de construction et théorèmes d’existence en géometrie algébrique IV: Les schémas de Hilbert, Séminaire Bourbaki 221 (1960/61).
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- B. Kim, Quot schemes for flags and Gromov invariants for flag varieties, preprint (1995).
- —, On equivariant quantum cohomology, Internat. Math. Res. Notices, no. 17 (1996), 841–851.
- —, Quantum cohomology of flag manifolds $G/B$ and quantum Toda lattices, preprint (1996).
- Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297. MR 360616
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244, DOI 10.1007/BF02101490
- Alexander Kuznetsov, Laumon’s resolution of Drinfel′d’s compactification is small, Math. Res. Lett. 4 (1997), no. 2-3, 349–364. MR 1453065, DOI 10.4310/MRL.1997.v4.n3.a4
- Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447–450 (French, with English summary). MR 660739
- Alain Lascoux and Marcel-Paul Schützenberger, Symmetry and flag manifolds, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 118–144. MR 718129, DOI 10.1007/BFb0063238
- Gérard Laumon, Un analogue global du cône nilpotent, Duke Math. J. 57 (1988), no. 2, 647–671 (French). MR 962524, DOI 10.1215/S0012-7094-88-05729-8
- G. Laumon, Faisceaux automorphes liés aux séries d’Eisenstein, Automorphic forms, Shimura varieties, and $L$-functions, Vol. I (Ann Arbor, MI, 1988) Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 227–281 (French). MR 1044822
- J.Li and G. Tian, Quantum cohomology of homogeneous varieties, preprint (1995).
- —, Virtual moduli cycles and Gromov-Witten invariants, preprint (1996).
- Benjamin M. Mann and R. James Milgram, On the moduli space of $\textrm {SU}(n)$ monopoles and holomorphic maps to flag manifolds, J. Differential Geom. 38 (1993), no. 1, 39–103. MR 1231702
- D. Monk, The geometry of flag manifolds, Proc. London Math. Soc. (3) 9 (1959), 253–286. MR 106911, DOI 10.1112/plms/s3-9.2.253
- David Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. With a section by G. M. Bergman. MR 0209285, DOI 10.1515/9781400882069
- Z. Qin and Y. Ruan, Quantum cohomology of projective bundles over $\mathbb {P}^{n}$, Trans. Amer. Math. Soc. (to appear).
- Yongbin Ruan and Gang Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995), no. 2, 259–367. MR 1366548
- Edward Witten, Topological sigma models, Comm. Math. Phys. 118 (1988), no. 3, 411–449. MR 958805, DOI 10.1007/BF01466725
- E. Witten, Topological sigma model, Commun. Math. Phys. 118 (1988), 411-449.
Bibliographic Information
- Ionuţ Ciocan-Fontanine
- Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
- Address at time of publication: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208-2730
- MR Author ID: 365502
- Email: ciocan@math.nwu.edu
- Received by editor(s): April 2, 1997
- Published electronically: February 5, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 2695-2729
- MSC (1991): Primary 14M15; Secondary 14N10
- DOI: https://doi.org/10.1090/S0002-9947-99-02230-8
- MathSciNet review: 1487610