Left-symmetric algebras for $\mathfrak {gl}(n)$
HTML articles powered by AMS MathViewer
- by Oliver Baues
- Trans. Amer. Math. Soc. 351 (1999), 2979-2996
- DOI: https://doi.org/10.1090/S0002-9947-99-02315-6
- Published electronically: March 8, 1999
- PDF | Request permission
Abstract:
We study the classification problem for left-symmetric algebras with commutation Lie algebra ${\mathfrak {gl}}(n)$ in characteristic $0$. The problem is equivalent to the classification of étale affine representations of ${\mathfrak {gl}}(n)$. Algebraic invariant theory is used to characterize those modules for the algebraic group $\operatorname {SL}(n)$ which belong to affine étale representations of ${\mathfrak {gl}}(n)$. From the classification of these modules we obtain the solution of the classification problem for ${\mathfrak {gl}}(n)$. As another application of our approach, we exhibit left-symmetric algebra structures on certain reductive Lie algebras with a one-dimensional center and a non-simple semisimple ideal.References
- E. M. Andreev, È. B. Vinberg, and A. G. Èlašvili, Orbits of highest dimension of semisimple linear Lie groups, Funkcional. Anal. i Priložen. 1 (1967), no. 4, 3–7 (Russian). MR 0267040
- O. Baues, Flache Strukturen auf $\mathfrak {gl}(n)$ und zugehörige linkssymmetrische Algebren, Dissertation, Düsseldorf 1995
- Yves Benoist, Une nilvariété non affine, J. Differential Geom. 41 (1995), no. 1, 21–52 (French, with English summary). MR 1316552
- Yves Benoist, Nilvariétés projectives, Comment. Math. Helv. 69 (1994), no. 3, 447–473 (French). MR 1289337, DOI 10.1007/BF02564497
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Michel N. Boyom, Algèbres à associateur symètrique et algèbres de Lie réductives, Thèse de doctorat, Université de Grenoble (1968)
- Dietrich Burde, Left-invariant affine structures on reductive Lie groups, J. Algebra 181 (1996), no. 3, 884–902. MR 1386584, DOI 10.1006/jabr.1996.0151
- Dietrich Burde, Affine structures on nilmanifolds, Internat. J. Math. 7 (1996), no. 5, 599–616. MR 1411303, DOI 10.1142/S0129167X96000323
- D. Burde and F. Grunewald, Modules for certain Lie algebras of maximal class, J. Pure Appl. Algebra 99 (1995), no. 3, 239–254. MR 1332900, DOI 10.1016/0022-4049(94)00002-Z
- A. G. Élashvili, Canonical form and stationary subalgebras of points of general position for simple linear Lie-groups, Funct. Anal. and Applic. 6 (1972), 44 -53
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Fritz Grunewald and Dan Segal, On affine crystallographic groups, J. Differential Geom. 40 (1994), no. 3, 563–594. MR 1305981
- Jacques Helmstetter, Algèbres symétriques à gauche, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A1088–A1091 (French). MR 291233
- Hyuk Kim, Complete left-invariant affine structures on nilpotent Lie groups, J. Differential Geom. 24 (1986), no. 3, 373–394. MR 868976
- Hanspeter Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984 (German). MR 768181, DOI 10.1007/978-3-322-83813-1
- Hanspeter Kraft and Gerald W. Schwarz, Reductive group actions with one-dimensional quotient, Inst. Hautes Études Sci. Publ. Math. 76 (1992), 1–97. MR 1215592, DOI 10.1007/BF02699430
- Peter Littelmann, Koreguläre und äquidimensionale Darstellungen, J. Algebra 123 (1989), no. 1, 193–222 (German, with English summary). MR 1000484, DOI 10.1016/0021-8693(89)90043-4
- Alberto Medina Perea, Flat left-invariant connections adapted to the automorphism structure of a Lie group, J. Differential Geometry 16 (1981), no. 3, 445–474 (1982). MR 654637
- John Milnor, On fundamental groups of complete affinely flat manifolds, Advances in Math. 25 (1977), no. 2, 178–187. MR 454886, DOI 10.1016/0001-8708(77)90004-4
- Katsumi Nomizu and Takeshi Sasaki, Affine differential geometry, Cambridge Tracts in Mathematics, vol. 111, Cambridge University Press, Cambridge, 1994. Geometry of affine immersions. MR 1311248
- V. L. Popov, Groups, generators, syzygies, and orbits in invariant theory, Translations of Mathematical Monographs, vol. 100, American Mathematical Society, Providence, RI, 1992. Translated from the Russian by A. Martsinkovsky. MR 1171012, DOI 10.1090/mmono/100
- V. L. Popov, Stability of the action of an algebraic group on an algebraic variety, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 371–385 (Russian). MR 0301028
- Maxwell Rosenlicht, A remark on quotient spaces, An. Acad. Brasil. Ci. 35 (1963), 487–489. MR 171782
- M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155. MR 430336, DOI 10.1017/S0027763000017633
- Gerald W. Schwarz, Representations of simple Lie groups with regular rings of invariants, Invent. Math. 49 (1978), no. 2, 167–191. MR 511189, DOI 10.1007/BF01403085
- Gerald W. Schwarz, Representations of simple Lie groups with a free module of covariants, Invent. Math. 50 (1978/79), no. 1, 1–12. MR 516601, DOI 10.1007/BF01406465
- Dan Segal, The structure of complete left-symmetric algebras, Math. Ann. 293 (1992), no. 3, 569–578. MR 1170527, DOI 10.1007/BF01444735
- Dan Segal, Free left-symmetric algebras and an analogue of the Poincaré-Birkhoff-Witt theorem, J. Algebra 164 (1994), no. 3, 750–772. MR 1272113, DOI 10.1006/jabr.1994.1088
- È. B. Vinberg, The theory of homogeneous convex cones, Trudy Moskov. Mat. Obšč. 12 (1963), 303–358 (Russian). MR 0158414
Bibliographic Information
- Oliver Baues
- Affiliation: Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf, Universitäts- strasse 1, D-40225 Düsseldorf, Germany
- Address at time of publication: Department of Mathematics, ETH-Zentrum, CH-8092 Zürich, Switzerland
- Email: oliver@math.ethz.ch
- Received by editor(s): February 10, 1997
- Published electronically: March 8, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 2979-2996
- MSC (1991): Primary 55N35, 55Q70, 55S20
- DOI: https://doi.org/10.1090/S0002-9947-99-02315-6
- MathSciNet review: 1608273