## Brownian sheet images and Bessel-Riesz capacity

HTML articles powered by AMS MathViewer

- by Davar Khoshnevisan PDF
- Trans. Amer. Math. Soc.
**351**(1999), 2607-2622 Request permission

## Abstract:

We show that the image of a 2–dimensional set under $d$–dimensional, 2–parameter Brownian sheet can have positive Lebesgue measure if and only if the set in question has positive ($d/2$)–dimensional Bessel–Riesz capacity. Our methods solve a problem of J.-P. Kahane.## References

- Robert J. Adler,
*The geometry of random fields*, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Ltd., Chichester, 1981. MR**611857** - H. Ben Saud and K. Jenßen,
*A characterization of parabolic potential theory*, Math. Ann.,**272**(1985), 281–289. - Itai Benjamini, Robin Pemantle, and Yuval Peres,
*Martin capacity for Markov chains*, Ann. Probab.**23**(1995), no. 3, 1332–1346. MR**1349175** - N. N. Cěntsov,
*Wiener random fields depending on several parameters*, Dokl. Akad. Nauk S.S.S.R. (NS),**106**(1956), 607–609. - Robert C. Dalang and John B. Walsh,
*Local structure of level sets of the Brownian sheet*, Stochastic analysis: random fields and measure-valued processes (Ramat Gan, 1993/1995) Israel Math. Conf. Proc., vol. 10, Bar-Ilan Univ., Ramat Gan, 1996, pp. 57–64. MR**1415187** - Peter Imkeller,
*Two-parameter martingales and their quadratic variation*, Lecture Notes in Mathematics, vol. 1308, Springer-Verlag, Berlin, 1988. MR**947545**, DOI 10.1007/BFb0078096 - Jean-Pierre Kahane,
*Some random series of functions*, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR**833073** - Robert Kaufman and Jang Mei Wu,
*Parabolic potential theory*, J. Differential Equations**43**(1982), no. 2, 204–234. MR**647063**, DOI 10.1016/0022-0396(82)90091-2 - D. Khoshnevisan
*Some polar sets for the Brownian sheet*, Sém. de Prob., XXXI, Lecture Notes in Mathematics, vol. 1655, pp. 190–197, 1997. - D. Khoshnevisan and Z. Shi,
*Brownian sheet and capacity*, Preprint, 1997 - Steven Orey and William E. Pruitt,
*Sample functions of the $N$-parameter Wiener process*, Ann. Probability**1**(1973), no. 1, 138–163. MR**346925**, DOI 10.1214/aop/1176997030 - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - Y. Xiao,
*Hitting probabilities and polar sets for fractional Brownian motion*, Preprint, 1997.

## Additional Information

**Davar Khoshnevisan**- Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
- MR Author ID: 302544
- Email: davar@math.utah.edu
- Received by editor(s): September 23, 1997
- Received by editor(s) in revised form: June 11, 1998
- Published electronically: February 9, 1999
- Additional Notes: Research supported by grants from the National Science Foundation and the National Security Agency
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**351**(1999), 2607-2622 - MSC (1991): Primary 60J45; Secondary 60G15
- DOI: https://doi.org/10.1090/S0002-9947-99-02408-3
- MathSciNet review: 1638246