A theorem on zeta functions associated with polynomials
HTML articles powered by AMS MathViewer
- by Minking Eie and Kwang-Wu Chen
- Trans. Amer. Math. Soc. 351 (1999), 3217-3228
- DOI: https://doi.org/10.1090/S0002-9947-99-02027-9
- Published electronically: April 20, 1999
- PDF | Request permission
Abstract:
Let $\beta =(\beta _{1},\ldots ,\beta _{r})$ be an $r$-tuple of non-negative integers and $P_{j}(X)$ $(j=1,2,\ldots ,n)$ be polynomials in ${\mathbb {R}}[X_{1},\ldots ,X_{r}]$ such that $P_{j}(n)>0$ for all $n\in {\mathbb {N}}^{r}$ and the series \begin{equation*}\sum _{n\in {\mathbb {N}}^{r}} P_{j}(n)^{-s}\end{equation*} is absolutely convergent for Re $s>\sigma _{j}>0$. We consider the zeta functions \begin{equation*}Z(P_{j},\beta ,s)=\sum _{n\in {\mathbb {N}}^{r}}n^{\beta } P_{j}(n)^{-s},\quad \text {Re} s>|\beta |+\sigma _{j}, \quad 1\leq j\leq n.\end{equation*} All these zeta functions $Z(\prod ^{n}_{j=1} P_{j},\beta ,s)$ and $Z(P_{j},\beta ,s)\quad (j=1,2,\ldots ,n)$ are analytic functions of $s$ when Re$s$ is sufficiently large and they have meromorphic analytic continuations in the whole complex plane. In this paper we shall prove that \begin{equation*}Z(\prod _{j=1}^{n} P_{j},\beta ,0)=\frac {1}{n} \sum _{j=1}^{n} Z(P_{j},\beta ,0).\end{equation*} As an immediate application, we use it to evaluate the special values of zeta functions associated with products of linear forms as considered by Shintani and the first author.References
- Bruce C. Berndt, Ramanujan’s notebooks. Part II, Springer-Verlag, New York, 1989. MR 970033, DOI 10.1007/978-1-4612-4530-8
- P. Cassou-Nouguès, Valeurs aux entiers négatifs des functions zêta $p$-adiques, Invent. Math. 51 (1979), 25–59.
- Pierrette Cassou-Noguès, Valeurs aux entiers négatifs des séries de Dirichlet associées à un polynôme. I, J. Number Theory 14 (1982), no. 1, 32–64 (French, with English summary). MR 644899, DOI 10.1016/0022-314X(82)90056-7
- Pierrette Cassou-Noguès, Séries de Dirichlet et intégrales associées à un polynôme à deux indéterminées, J. Number Theory 23 (1986), no. 1, 1–54 (French, with English summary). MR 840014, DOI 10.1016/0022-314X(86)90002-8
- Min King Eie, On a Dirichlet series associated with a polynomial, Proc. Amer. Math. Soc. 110 (1990), no. 3, 583–590. MR 1037206, DOI 10.1090/S0002-9939-1990-1037206-0
- Min King Eie, The special values at negative integers of Dirichlet series associated with polynomials of several variables, Proc. Amer. Math. Soc. 119 (1993), no. 1, 51–61. MR 1148022, DOI 10.1090/S0002-9939-1993-1148022-6
- Min King Eie, A note on Bernoulli numbers and Shintani generalized Bernoulli polynomials, Trans. Amer. Math. Soc. 348 (1996), no. 3, 1117–1136. MR 1321572, DOI 10.1090/S0002-9947-96-01479-1
- I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. MR 0435831
- Takuro Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 2, 393–417. MR 427231
- Takuro Shintani, On values at $s=1$ of certain $L$ functions of totally real algebraic number fields, Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976) Japan Soc. Promotion Sci., Tokyo, 1977, pp. 201–212. MR 0453702
- Don Zagier, Une formule-limite de Kronecker pour les corps quadratiques réels, Séminaire de Théorie des Nombres, 1973–1974 (Univ. Bordeaux I, Talence), Lab. Théorie des Nombres, Centre Nat. Recherche Sci., Talence, 1974, pp. Exp. No. 21, 6 (French). MR 0389854
Bibliographic Information
- Minking Eie
- Affiliation: Institute of Applied Mathematics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan, Republic of China
- Email: mkeie@math.ccu.edu.tw
- Kwang-Wu Chen
- Affiliation: Institute of Applied Mathematics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan, Republic of China
- Received by editor(s): August 11, 1995
- Received by editor(s) in revised form: February 4, 1997
- Published electronically: April 20, 1999
- Additional Notes: This work was supported by Department of Mathematics, National Chung Cheng University and National Science Foundation of Taiwan, Republic of China
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 3217-3228
- MSC (1991): Primary 11M06
- DOI: https://doi.org/10.1090/S0002-9947-99-02027-9
- MathSciNet review: 1443872