Bilipschitz homogeneous Jordan curves
HTML articles powered by AMS MathViewer
- by Manouchehr Ghamsari and David A. Herron
- Trans. Amer. Math. Soc. 351 (1999), 3197-3216
- DOI: https://doi.org/10.1090/S0002-9947-99-02324-7
- Published electronically: March 29, 1999
- PDF | Request permission
Abstract:
We characterize bilipschitz homogeneous Jordan curves by utilizing quasihomogeneous parameterizations. We verify that rectifiable bilipschitz homogeneous Jordan curves satisfy a chordarc condition. We exhibit numerous examples including a bilipschitz homogeneous quasicircle which has lower Hausdorff density zero. We examine homeomorphisms between Jordan curves.References
- V. V. Aseev and A. A. Shalaginov, Mappings that boundedly distort distance ratios, Dokl. Akad. Nauk 335 (1994), no. 2, 133–134 (Russian); English transl., Russian Acad. Sci. Dokl. Math. 49 (1994), no. 2, 248–250. MR 1288830
- Beverly Brechner and Timo Erkama, On topologically and quasiconformally homogeneous continua, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), no. 2, 207–208. MR 565872, DOI 10.5186/aasfm.1978-79.0402
- Timo Erkama, Quasiconformally homogeneous curves, Michigan Math. J. 24 (1977), no. 2, 157–159. MR 466539
- Timo Erkama, On domains of bounded dilatation, Complex analysis—fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981) Lecture Notes in Math., vol. 1013, Springer, Berlin, 1983, pp. 68–75. MR 738082, DOI 10.1007/BFb0066518
- K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
- F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172–199. MR 437753, DOI 10.1007/BF02786713
- Manouchehr Ghamsari, Quasiconformal groups acting on $B^3$ that are not quasiconformally conjugate to Möbius groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), no. 2, 245–250. MR 1346809
- M.Ghamsari and D.A.Herron, Higher dimensional Ahlfors regular sets and chordarc curves in $\mathbb {R}^n$, Rocky Mountain J. Math., to appear.
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI 10.1512/iumj.1981.30.30055
- Olli Lehto, Quasiconformal mappings in the plane, Lectures on quasiconformal mappings, Dept. Math., Univ. Maryland, Lecture Note, No. 14, Dept. Math., Univ. Maryland, College Park, Md., 1975, pp. 1–43. MR 0393472
- P.MacManus, R.Näkki and B.P.Palka, Quasiconformally homogeneous compacta in the complex plane, Michigan Math. J. 45 (1998) 227–241.
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890, DOI 10.1017/CBO9780511623813
- Volker Mayer, Trajectoires de groupes à $1$-paramètre de quasi-isométries, Rev. Mat. Iberoamericana 11 (1995), no. 1, 143–164 (French). MR 1321776, DOI 10.4171/RMI/169
- Jukka Sarvas, Boundary of a homogeneous Jordan domain, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 511–514. MR 802515, DOI 10.5186/aasfm.1985.1057
- A. A. Shalaginov, Mappings of self-similar curves, Sibirsk. Mat. Zh. 34 (1993), no. 6, 210–215, v, x (Russian, with English and Russian summaries); English transl., Siberian Math. J. 34 (1993), no. 6, 1190–1195. MR 1268173, DOI 10.1007/BF00973484
- Pekka Tukia, A quasiconformal group not isomorphic to a Möbius group, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 1, 149–160. MR 639972, DOI 10.5186/aasfm.1981.0625
- P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 97–114. MR 595180, DOI 10.5186/aasfm.1980.0531
- Pekka Tukia and Jussi Väisälä, Bi-Lipschitz extensions of maps having quasiconformal extensions, Math. Ann. 269 (1984), no. 4, 561–572. MR 766014, DOI 10.1007/BF01450765
- Jussi Väisälä, Quasiconformal maps of cylindrical domains, Acta Math. 162 (1989), no. 3-4, 201–225. MR 989396, DOI 10.1007/BF02392837
Bibliographic Information
- Manouchehr Ghamsari
- Affiliation: Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221
- Email: manouchehr.ghamsari@ucollege.uc.edu
- David A. Herron
- Affiliation: Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221-0025
- MR Author ID: 85095
- Email: david.herron@math.uc.edu
- Received by editor(s): September 13, 1996
- Received by editor(s) in revised form: December 15, 1997
- Published electronically: March 29, 1999
- Additional Notes: The second author was partially supported by the Charles Phelps Taft Memorial Fund at UC
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 3197-3216
- MSC (1991): Primary 30C65; Secondary 28A80
- DOI: https://doi.org/10.1090/S0002-9947-99-02324-7
- MathSciNet review: 1608313
Dedicated: Dedicated to Professor Frederick W. Gehring