On modules of bounded multiplicities for the symplectic algebras
HTML articles powered by AMS MathViewer
- by D. J. Britten and F. W. Lemire
- Trans. Amer. Math. Soc. 351 (1999), 3413-3431
- DOI: https://doi.org/10.1090/S0002-9947-99-02338-7
- Published electronically: April 20, 1999
- PDF | Request permission
Abstract:
Simple infinite dimensional highest weight modules having bounded weight multipicities are classified as submodules of a tensor product. Also, it is shown that a simple torsion free module of finite degree tensored with a finite dimensional module is completely reducible.References
- Georgia Benkart, Daniel Britten, and Frank Lemire, Modules with bounded weight multiplicities for simple Lie algebras, Math. Z. 225 (1997), no. 2, 333–353. MR 1464935, DOI 10.1007/PL00004314
- D. J. Britten, F. W. Lemire, and V. M. Futorny, Simple $A_2$-modules with a finite-dimensional weight space, Comm. Algebra 23 (1995), no. 2, 467–510. MR 1311800, DOI 10.1080/00927879508825232
- D. J. Britten, J. Hooper, and F. W. Lemire, Simple $C_n$ modules with multiplicities $1$ and applications, Canad. J. Phys. 72 (1994), no. 7-8, 326–335 (English, with English and French summaries). MR 1297597, DOI 10.1139/p94-048
- D.J. Britten and F.W. Lemire, A Pieri-like Formula for Torsion Free Modules, Canad. J. Math. 50 (1998), 266–289.
- D. J. Britten and F. W. Lemire, A classification of simple Lie modules having a $1$-dimensional weight space, Trans. Amer. Math. Soc. 299 (1987), no. 2, 683–697. MR 869228, DOI 10.1090/S0002-9947-1987-0869228-9
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- Nicole Conze and Jacques Dixmier, Idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple, Bull. Sci. Math. (2) 96 (1972), 339–351 (French). MR 321991
- S. L. Fernando, Lie algebra modules with finite-dimensional weight spaces. I, Trans. Amer. Math. Soc. 322 (1990), no. 2, 757–781. MR 1013330, DOI 10.1090/S0002-9947-1990-1013330-8
- Jens Carsten Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer, Berlin, 1979 (German). MR 552943, DOI 10.1007/BFb0069521
- Bertram Kostant, On the tensor product of a finite and an infinite dimensional representation, J. Functional Analysis 20 (1975), no. 4, 257–285. MR 0414796, DOI 10.1016/0022-1236(75)90035-x
- F. W. Lemire, Note on weight spaces of irreducible linear representations, Canad. Math. Bull. 11 (1968), 399–403. MR 235073, DOI 10.4153/CMB-1968-045-2
- F. W. Lemire, Weight spaces and irreducible representations of simple Lie algebras, Proc. Amer. Math. Soc. 22 (1969), 192–197. MR 243001, DOI 10.1090/S0002-9939-1969-0243001-1
- O. Mathieu, Classification of Irreducible Weight Modules, preprint
Bibliographic Information
- D. J. Britten
- Affiliation: Department of Mathematics, University of Windsor, Windsor, Ontario, Canada N9B 3P4
- F. W. Lemire
- Affiliation: Department of Mathematics, University of Windsor, Windsor, Ontario, Canada N9B 3P4
- Received by editor(s): April 15, 1997
- Published electronically: April 20, 1999
- Additional Notes: The first author was supported in part by NSERC Grant #0GP0008471 and the second author was supported in part by NSERC Grant #0GP0007742
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 3413-3431
- MSC (1991): Primary 17B10
- DOI: https://doi.org/10.1090/S0002-9947-99-02338-7
- MathSciNet review: 1615943