Invariant measures for algebraic actions, Zariski dense subgroups and Kazhdan’s property (T)
HTML articles powered by AMS MathViewer
- by Yehuda Shalom
- Trans. Amer. Math. Soc. 351 (1999), 3387-3412
- DOI: https://doi.org/10.1090/S0002-9947-99-02363-6
- Published electronically: April 12, 1999
- PDF | Request permission
Abstract:
Let $k$ be any locally compact non-discrete field. We show that finite invariant measures for $k$-algebraic actions are obtained only via actions of compact groups. This extends both Borel’s density and fixed point theorems over local fields (for semisimple/solvable groups, resp.). We then prove that for $k$-algebraic actions, finitely additive finite invariant measures are obtained only via actions of amenable groups. This gives a new criterion for Zariski density of subgroups and is shown to have representation theoretic applications. The main one is to Kazhdan’s property $(T)$ for algebraic groups, which we investigate and strengthen.References
- Norbert A’Campo and Marc Burger, Réseaux arithmétiques et commensurateur d’après G. A. Margulis, Invent. Math. 116 (1994), no. 1-3, 1–25 (French). MR 1253187, DOI 10.1007/BF01231555
- I. N. Bernšteĭn and A. V. Zelevinskiĭ, Representations of the group $GL(n,F),$ where $F$ is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), no. 3(189), 5–70 (Russian). MR 0425030
- Armand Borel, Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. (2) 72 (1960), 179–188. MR 123639, DOI 10.2307/1970150
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042
- A. Borel and G. Harder, Existence of discrete cocompact subgroups of reductive groups over local fields, J. Reine Angew. Math. 298 (1978), 53–64. MR 483367
- A. Borel and J.-P. Serre, Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv. 39 (1964), 111–164 (French). MR 181643, DOI 10.1007/BF02566948
- Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150 (French). MR 207712, DOI 10.1007/BF02684375
- M. Burger, Kazhdan constants for $\textrm {SL}(3,\textbf {Z})$, J. Reine Angew. Math. 413 (1991), 36–67. MR 1089795, DOI 10.1515/crll.1991.413.36
- Shrikrishna G. Dani, A simple proof of Borel’s density theorem, Math. Z. 174 (1980), no. 1, 81–94. MR 591617, DOI 10.1007/BF01215084
- S. G. Dani, On ergodic quasi-invariant measures of group automorphism, Israel J. Math. 43 (1982), no. 1, 62–74. MR 728879, DOI 10.1007/BF02761685
- V. G. Drinfel′d, Finitely-additive measures on $S^{2}$ and $S^{3}$, invariant with respect to rotations, Funktsional. Anal. i Prilozhen. 18 (1984), no. 3, 77 (Russian). MR 757256
- Pierre Eymard, Sur les moyennes invariantes et les représentations unitaires, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A1649–A1652 (French). MR 281021
- Furman, A. and Shalom, Y., Random walks in Hilbert spaces and Lyapunov exponents, in preparation.
- Furman, A. and Shalom Y., Sharp ergodic theorems for group actions and strong ergodicity, To appear in Ergodic Theory and Dynamical Systems.
- Harry Furstenberg, A note on Borel’s density theorem, Proc. Amer. Math. Soc. 55 (1976), no. 1, 209–212. MR 422497, DOI 10.1090/S0002-9939-1976-0422497-X
- F. P. Greenleaf, Amenable actions of locally compact groups, J. Functional Analysis 4 (1969), 295–315. MR 0246999, DOI 10.1016/0022-1236(69)90016-0
- Pierre de la Harpe and Alain Valette, La propriété $(T)$ de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque 175 (1989), 158 (French, with English summary). With an appendix by M. Burger. MR 1023471
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773, DOI 10.1007/978-1-4684-9443-3
- Alessandra Iozzi, Invariant geometric structures: a nonlinear extension of the Borel identity theorem, Amer. J. Math. 114 (1992), no. 3, 627–648. MR 1165356, DOI 10.2307/2374772
- A. Iozzi and A. Nevo, Algebraic hulls and the Følner property, Geom. Funct. Anal. 6 (1996), no. 4, 666–688. MR 1406668, DOI 10.1007/BF02247116
- Kazhdan, D., Connection of the dual space of a group with the structure of its closed subgroups, Func. Anal. Appl. 1 63–65, (1967).
- Alexander Lubotzky, Discrete groups, expanding graphs and invariant measures, Progress in Mathematics, vol. 125, Birkhäuser Verlag, Basel, 1994. With an appendix by Jonathan D. Rogawski. MR 1308046, DOI 10.1007/978-3-0346-0332-4
- A. Lubotzky, R. Phillips, and P. Sarnak, Hecke operators and distributing points on the sphere. I, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S149–S186. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861487, DOI 10.1002/cpa.3160390710
- G. A. Margulis, Some remarks on invariant means, Monatsh. Math. 90 (1980), no. 3, 233–235. MR 596890, DOI 10.1007/BF01295368
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- Richard D. Mosak and Martin Moskowitz, Zariski density in Lie groups, Israel J. Math. 52 (1985), no. 1-2, 1–14. MR 815596, DOI 10.1007/BF02776074
- Martin Moskowitz, On the density theorems of Borel and Furstenberg, Ark. Mat. 16 (1978), no. 1, 11–27. MR 507233, DOI 10.1007/BF02385980
- Gopal Prasad, Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits, Bull. Soc. Math. France 110 (1982), no. 2, 197–202 (English, with French summary). MR 667750, DOI 10.24033/bsmf.1959
- Joseph Rosenblatt, Uniqueness of invariant means for measure-preserving transformations, Trans. Amer. Math. Soc. 265 (1981), no. 2, 623–636. MR 610970, DOI 10.1090/S0002-9947-1981-0610970-7
- Shalom, Y., Expanding graphs and invariant means, To appear in Combinatorica.
- Shalom, Y., Zariski closures of co-amenable subgroups and a spectral extension of “Tits’ alternative”, in preparation.
- Klaus Schmidt, Asymptotically invariant sequences and an action of $\textrm {SL}(2,\,\textbf {Z})$ on the $2$-sphere, Israel J. Math. 37 (1980), no. 3, 193–208. MR 599454, DOI 10.1007/BF02760961
- Klaus Schmidt, Amenability, Kazhdan’s property $T$, strong ergodicity and invariant means for ergodic group-actions, Ergodic Theory Dynam. Systems 1 (1981), no. 2, 223–236. MR 661821, DOI 10.1017/s014338570000924x
- Garrett Stuck, Growth of homogeneous spaces, density of discrete subgroups and Kazhdan’s property (T), Invent. Math. 109 (1992), no. 3, 505–517. MR 1176201, DOI 10.1007/BF01232036
- Dennis Sullivan, For $n>3$ there is only one finitely additive rotationally invariant measure on the $n$-sphere defined on all Lebesgue measurable subsets, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 121–123. MR 590825, DOI 10.1090/S0273-0979-1981-14880-1
- Tits, J. Lectures on Algebraic Groups, Notes by P. Anche and D. Winter after a course of J. Tits 1966/7, Yale University.
- S. P. Wang, On the Mautner phenomenon and groups with property $(\textrm {T})$, Amer. J. Math. 104 (1982), no. 6, 1191–1210. MR 681733, DOI 10.2307/2374057
- Wang, S.P., On anisotropic solvable linear algebraic groups, Proc. AMS 84, 11–15, (1982).
- Witte, D., Superrigidity of lattices in solvable Lie groups, Invent. Math. 122 (1995), no. 1, 147–193.
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
- R. J. Zimmer, Kazhdan groups acting on compact manifolds, Invent. Math. 75 (1984), no. 3, 425–436. MR 735334, DOI 10.1007/BF01388637
Bibliographic Information
- Yehuda Shalom
- Affiliation: Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
- Address at time of publication: Department of Mathematics, Princeton University, Princeton, New Jersey 08544-1000
- Email: yehuda@math.huji.ac.il
- Received by editor(s): March 26, 1997
- Published electronically: April 12, 1999
- Additional Notes: Partially sponsored by the Edmund Landau Center for research in Mathematical Analysis, supported by the Minerva Foundation (Germany).
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 3387-3412
- MSC (1991): Primary 14L30, 20G05, 22E50, 28D15
- DOI: https://doi.org/10.1090/S0002-9947-99-02363-6
- MathSciNet review: 1615966