Invariance principles and Gaussian approximation for strictly stationary processes
HTML articles powered by AMS MathViewer
- by Dalibor Volný
- Trans. Amer. Math. Soc. 351 (1999), 3351-3371
- DOI: https://doi.org/10.1090/S0002-9947-99-02401-0
- Published electronically: April 8, 1999
- PDF | Request permission
Abstract:
We show that in any aperiodic and ergodic dynamical system there exists a square integrable process $(f\circ T^{i})$ the partial sums of which can be closely approximated by the partial sums of Gaussian i.i.d. random variables. For $(f\circ T^{i})$ both weak and strong invariance principles hold.References
- Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- Robert Burton and Manfred Denker, On the central limit theorem for dynamical systems, Trans. Amer. Math. Soc. 302 (1987), no. 2, 715–726. MR 891642, DOI 10.1090/S0002-9947-1987-0891642-6
- I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ. MR 832433, DOI 10.1007/978-1-4615-6927-5
- N. I. Chernov, Limit theorems and Markov approximations for chaotic dynamical systems, Probab. Theory Related Fields 101 (1995), no. 3, 321–362. MR 1324089, DOI 10.1007/BF01200500
- M. Csörgő and P. Révész, Strong approximations in probability and statistics, Probability and Mathematical Statistics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 666546
- De La Rue, T., Ladouceur, S., Peškir, G., and Weber, M., On the central limit theorem for aperiodic dynamical systems and applications, preprint 1993.
- Manfred Denker and Michael Keane, Almost topological dynamical systems, Israel J. Math. 34 (1979), no. 1-2, 139–160 (1980). MR 571401, DOI 10.1007/BF02761830
- M. I. Gordin, The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR 188 (1969), 739–741 (Russian). MR 0251785
- Olga Taussky, An algebraic property of Laplace’s differential equation, Quart. J. Math. Oxford Ser. 10 (1939), 99–103. MR 83, DOI 10.1093/qmath/os-10.1.99
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- Keane, M. and Volný, D., an unpublished result.
- Michael T. Lacey, On weak convergence in dynamical systems to self-similar processes with spectral representation, Trans. Amer. Math. Soc. 328 (1991), no. 2, 767–778. MR 1066446, DOI 10.1090/S0002-9947-1991-1066446-5
- Michael T. Lacey, On central limit theorems, modulus of continuity and Diophantine type for irrational rotations, J. Anal. Math. 61 (1993), 47–59. MR 1253438, DOI 10.1007/BF02788838
- Lesigne, E., Almost sure central limit theorem for strictly stationary processes, preprint 1996.
- Lesigne, E., personal communication, 1996.
- Liardet, P. and Volný, D., Sums of continuous and differentiable functions in dynamical systems, Israel J. of Mathematics 98 (1997), 29-60.
- Daniel J. Rudolph, Fundamentals of measurable dynamics, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1990. Ergodic theory on Lebesgue spaces. MR 1086631
- Thouvenot, J.-P. and Weiss, B., personal communication.
- Dalibor Volný, On limit theorems and category for dynamical systems, Yokohama Math. J. 38 (1990), no. 1, 29–35. MR 1093661
- Dalibor Volný, Approximating martingales and the central limit theorem for strictly stationary processes, Stochastic Process. Appl. 44 (1993), no. 1, 41–74. MR 1198662, DOI 10.1016/0304-4149(93)90037-5
Bibliographic Information
- Dalibor Volný
- Affiliation: Université de Rouen, UPRES-A CNRS 60 85, Site Colbert, 76821 Mont-Saint-Aignan Cedex, France
- Email: dalibor.volny@univ-rouen.fr
- Received by editor(s): February 21, 1997
- Published electronically: April 8, 1999
- Additional Notes: This research has been partially supported by the Grant Agency of the Charles University (Prague), grant #GAUK 6191
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 3351-3371
- MSC (1991): Primary 28D05, 60G10, 60F17, 60F05, 28D20
- DOI: https://doi.org/10.1090/S0002-9947-99-02401-0
- MathSciNet review: 1624218