Classes of singular integrals along curves and surfaces
HTML articles powered by AMS MathViewer
- by Andreas Seeger, Stephen Wainger, James Wright and Sarah Ziesler
- Trans. Amer. Math. Soc. 351 (1999), 3757-3769
- DOI: https://doi.org/10.1090/S0002-9947-99-02496-4
- Published electronically: May 20, 1999
- PDF | Request permission
Abstract:
This paper is concerned with singular convolution operators in $\mathbb {R}^{d}$, $d\ge 2$, with convolution kernels supported on radial surfaces $y_{d}=\Gamma (|y’|)$. We show that if $\Gamma (s)=\log s$, then $L^{p}$ boundedness holds if and only if $p=2$. This statement can be reduced to a similar statement about the multiplier $m(\tau ,\eta )=|\tau |^{-i\eta }$ in $\mathbb {R}^{2}$. We also construct smooth $\Gamma$ for which the corresponding operators are bounded for $p_{0}<p\le 2$ but unbounded for $p\le p_{0}$, for given $p_{0}\in [1,2)$. Finally we discuss some examples of singular integrals along convex curves in the plane, with odd extensions.References
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Hasse Carlsson, Michael Christ, Antonio Córdoba, Javier Duoandikoetxea, José L. Rubio de Francia, James Vance, Stephen Wainger, and David Weinberg, $L^p$ estimates for maximal functions and Hilbert transforms along flat convex curves in $\textbf {R}^2$, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 263–267. MR 828823, DOI 10.1090/S0273-0979-1986-15433-9
- Anthony Carbery, Michael Christ, James Vance, Stephen Wainger, and David K. Watson, Operators associated to flat plane curves: $L^p$ estimates via dilation methods, Duke Math. J. 59 (1989), no. 3, 675–700. MR 1046743, DOI 10.1215/S0012-7094-89-05930-9
- Michael Christ, Examples of singular maximal functions unbounded on $L^p$, Publ. Mat. 35 (1991), no. 1, 269–279. Conference on Mathematical Analysis (El Escorial, 1989). MR 1103620, DOI 10.5565/PUBLMAT_{3}5191_{1}3
- Michael Cowling, Gero Fendler, and John J. F. Fournier, Variants of Littlewood-Paley theory, Math. Ann. 285 (1989), no. 2, 333–342. MR 1016098, DOI 10.1007/BF01443522
- Javier Duoandikoetxea and José L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), no. 3, 541–561. MR 837527, DOI 10.1007/BF01388746
- Max Jodeit Jr., A note on Fourier multipliers, Proc. Amer. Math. Soc. 27 (1971), 423–424. MR 270072, DOI 10.1090/S0002-9939-1971-0270072-8
- Weon-Ju Kim, Stephen Wainger, James Wright, and Sarah Ziesler, Singular integrals and maximal functions associated to surfaces of revolution, Bull. London Math. Soc. 28 (1996), no. 3, 291–296. MR 1374408, DOI 10.1112/blms/28.3.291
- W. Littman, C. McCarthy, and N. Rivière, $L^{p}$-multiplier theorems, Studia Math. 30 (1968), 193–217. MR 231126, DOI 10.4064/sm-30-2-193-217
- Alexander Nagel, James Vance, Stephen Wainger, and David Weinberg, Hilbert transforms for convex curves, Duke Math. J. 50 (1983), no. 3, 735–744. MR 714828, DOI 10.1215/S0012-7094-83-05036-6
- Alexander Nagel, James Vance, Stephen Wainger, and David Weinberg, Maximal functions for convex curves, Duke Math. J. 52 (1985), no. 3, 715–722. MR 808100, DOI 10.1215/S0012-7094-85-05237-8
- Andreas Seeger, Some inequalities for singular convolution operators in $L^p$-spaces, Trans. Amer. Math. Soc. 308 (1988), no. 1, 259–272. MR 955772, DOI 10.1090/S0002-9947-1988-0955772-3
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
- James Vance, Stephen Wainger, and James Wright, The Hilbert transform and maximal function along nonconvex curves in the plane, Rev. Mat. Iberoamericana 10 (1994), no. 1, 93–121. MR 1271758, DOI 10.4171/RMI/146
- S. Ziesler, $L^2$-boundedness of maximal functions associated to convex curves in $\textbf {R}^n$, J. London Math. Soc. (2) 51 (1995), no. 2, 331–341. MR 1325576, DOI 10.1112/jlms/51.2.331
Bibliographic Information
- Andreas Seeger
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- MR Author ID: 226036
- Email: seeger@math.wisc.edu
- Stephen Wainger
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- MR Author ID: 179960
- Email: wainger@math.wisc.edu
- James Wright
- Affiliation: School of Mathematics, University of New South Wales, Sydney 2052, Australia
- Email: jimw@maths.unsw.edu.au
- Sarah Ziesler
- Affiliation: Department of Mathematics, University College Dublin, Dublin 4, Ireland
- Address at time of publication: Department of Mathematics, Dominican University, River Forest, Illinois 60305
- Email: ziessara@email.dom.edu
- Received by editor(s): May 27, 1997
- Published electronically: May 20, 1999
- Additional Notes: Research supported in part by grants from the National Science Foundation (A. S. & S. W.), the Australian Research Council (J. W.), and the Faculty of Arts, University College Dublin (S. Z.)
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 3757-3769
- MSC (1991): Primary 42B20, 42B15
- DOI: https://doi.org/10.1090/S0002-9947-99-02496-4
- MathSciNet review: 1665337