Extendability of Large-Scale Lipschitz Maps
HTML articles powered by AMS MathViewer
- by Urs Lang
- Trans. Amer. Math. Soc. 351 (1999), 3975-3988
- DOI: https://doi.org/10.1090/S0002-9947-99-02265-5
- Published electronically: February 8, 1999
- PDF | Request permission
Abstract:
Let $X,Y$ be metric spaces, $S$ a subset of $X$, and $f \colon S \to Y$ a large-scale lipschitz map. It is shown that $f$ possesses a large-scale lipschitz extension $\bar f \colon X \to Y$ (with possibly larger constants) if $Y$ is a Gromov hyperbolic geodesic space or the cartesian product of finitely many such spaces. No extension exists, in general, if $Y$ is an infinite-dimensional Hilbert space. A necessary and sufficient condition for the extendability of a lipschitz map $f \colon S \to Y$ is given in the case when $X$ is separable and $Y$ is a proper, convex geodesic space.References
- B. H. Bowditch, Notes on Gromov’s hyperbolicity criterion for path-metric spaces, Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 64–167. MR 1170364
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Benson Farb, The extrinsic geometry of subgroups and the generalized word problem, Proc. London Math. Soc. (3) 68 (1994), no. 3, 577–593. MR 1262309, DOI 10.1112/plms/s3-68.3.577
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. MR 1253544
- Jürgen Jost, Nonpositive curvature: geometric and analytic aspects, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1997. MR 1451625, DOI 10.1007/978-3-0348-8918-6
- M. D. Kirszbraun: Über die zusammenziehende und Lipschitzsche Transformationen, Fundamenta Math. 22 (1934), 77–108.
- U. Lang and V. Schroeder, Kirszbraun’s theorem and metric spaces of bounded curvature, Geom. Funct. Anal. 7 (1997), no. 3, 535–560. MR 1466337, DOI 10.1007/s000390050018
- E. J. McShane: Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837–842.
- John W. Morgan and Peter B. Shalen, Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. (2) 120 (1984), no. 3, 401–476. MR 769158, DOI 10.2307/1971082
- Nicholas Th. Varopoulos, Sur la distorsion de distances des sous-groupes des groupes de Lie, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 11, 1025–1026 (French, with English and French summaries). MR 1396633
Bibliographic Information
- Urs Lang
- Affiliation: Departement Mathematik, Eidgen Technische Hochschule Zentrum, CH-8092 Zürich, Switzerland
- Email: lang@math.ethz.ch
- Received by editor(s): August 8, 1997
- Published electronically: February 8, 1999
- Additional Notes: Supported by the Swiss National Science Foundation.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 3975-3988
- MSC (1991): Primary 53C20; Secondary 51Kxx, 20F32
- DOI: https://doi.org/10.1090/S0002-9947-99-02265-5
- MathSciNet review: 1698373