## Some interesting nonspherical tempered representations of graded Hecke algebras

HTML articles powered by AMS MathViewer

- by C. Kriloff
- Trans. Amer. Math. Soc.
**351**(1999), 4411-4428 - DOI: https://doi.org/10.1090/S0002-9947-99-02308-9
- Published electronically: February 10, 1999
- PDF | Request permission

## Abstract:

Lusztig’s presentation of the graded Hecke algebra in terms of generators and relations allows for the definition of algebras associated to noncrystallographic root systems. The representation theory of general graded Hecke algebras is investigated, the expected number of tempered representations for $\mathbb {H}(H_3)$ are accounted for, and it is shown that one of these representations has the unexpected property of being nonspherical despite being the only tempered representation appearing at its infinitesimal character. Additional nonspherical tempered representations of $\mathbb {H}(H_4)$ are also included.## References

- Dan Barbasch and Allen Moy,
*Reduction to real infinitesimal character in affine Hecke algebras*, J. Amer. Math. Soc.**6**(1993), no. 3, 611–635. MR**1186959**, DOI 10.1090/S0894-0347-1993-1186959-0 - Dan Barbasch and Allen Moy,
*Whittaker models with an Iwahori fixed vector*, Representation theory and analysis on homogeneous spaces (New Brunswick, NJ, 1993) Contemp. Math., vol. 177, Amer. Math. Soc., Providence, RI, 1994, pp. 101–105. MR**1303602**, DOI 10.1090/conm/177/01917 - Armand Borel,
*Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup*, Invent. Math.**35**(1976), 233–259. MR**444849**, DOI 10.1007/BF01390139 - Armand Borel and Nolan R. Wallach,
*Continuous cohomology, discrete subgroups, and representations of reductive groups*, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR**554917** - I. Bernstein and A. Zelevinsky,
*Representations of the groups $GL_n(F)$ where $F$ is a nonarchimedean local field*, Russian Math. Surveys**31**(1976), 1–68. - W. Casselman,
*Introduction to the theory of admissible representations of $p$-adic reductive groups*, unpublished notes. - Ivan Cherednik,
*A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras*, Invent. Math.**106**(1991), no. 2, 411–431. MR**1128220**, DOI 10.1007/BF01243918 - Sam Evens,
*The Langlands classification for graded Hecke algebras*, Proc. Amer. Math. Soc.**124**(1996), no. 4, 1285–1290. MR**1322921**, DOI 10.1090/S0002-9939-96-03295-9 - L. C. Grove and C. T. Benson,
*Finite reflection groups*, 2nd ed., Graduate Texts in Mathematics, vol. 99, Springer-Verlag, New York, 1985. MR**777684**, DOI 10.1007/978-1-4757-1869-0 - Sigurdur Helgason,
*Groups and geometric analysis*, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR**754767** - Howard Hiller,
*Geometry of Coxeter groups*, Research Notes in Mathematics, vol. 54, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR**649068** - G. Heckman and E. Opdam,
*Yang’s system of particles and Hecke algebras*, Ann. of Math.**145**(1997), 139–173. - James E. Humphreys,
*Reflection groups and Coxeter groups*, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR**1066460**, DOI 10.1017/CBO9780511623646 - Chris Jantzen,
*Degenerate principal series for orthogonal groups*, J. Reine Angew. Math.**441**(1993), 61–98. MR**1228612**, DOI 10.1515/crll.1993.441.61 - Chris Jantzen,
*Degenerate principal series for symplectic groups*, Mem. Amer. Math. Soc.**102**(1993), no. 488, xiv+111. MR**1134591**, DOI 10.1090/memo/0488 - Shin-ichi Kato,
*Irreducibility of principal series representations for Hecke algebras of affine type*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**28**(1981), no. 3, 929–943 (1982). MR**656065** - David Kazhdan and George Lusztig,
*Proof of the Deligne-Langlands conjecture for Hecke algebras*, Invent. Math.**87**(1987), no. 1, 153–215. MR**862716**, DOI 10.1007/BF01389157 - C. Kriloff,
*Representations of graded Hecke algebras associated to noncrystallographic root systems*, Thesis, University of Michigan (1995). - George Lusztig,
*Cuspidal local systems and graded Hecke algebras. I*, Inst. Hautes Études Sci. Publ. Math.**67**(1988), 145–202. MR**972345** - George Lusztig,
*Affine Hecke algebras and their graded version*, J. Amer. Math. Soc.**2**(1989), no. 3, 599–635. MR**991016**, DOI 10.1090/S0894-0347-1989-0991016-9 - George Lusztig,
*Cuspidal local systems and graded Hecke algebras. II*, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 217–275. With errata for Part I [Inst. Hautes Études Sci. Publ. Math. No. 67 (1988), 145–202; MR0972345 (90e:22029)]. MR**1357201**, DOI 10.1090/S1088-4165-02-00172-3 - François Rodier,
*Décomposition de la série principale des groupes réductifs $p$-adiques*, Noncommutative harmonic analysis and Lie groups (Marseille, 1980) Lecture Notes in Math., vol. 880, Springer, Berlin-New York, 1981, pp. 408–424 (French). MR**644842** - Marko Tadić,
*Unitary dual of $p$-adic $\textrm {GL}(n)$. Proof of Bernstein conjectures*, Bull. Amer. Math. Soc. (N.S.)**13**(1985), no. 1, 39–42. MR**788387**, DOI 10.1090/S0273-0979-1985-15355-8 - J. Stembridge,
*A Maple package for root systems and finite Coxeter groups*, unpublished documentation, 1992.

## Bibliographic Information

**C. Kriloff**- Affiliation: Department of Mathematics Idaho State University Pocatello, Idaho 83209-8085
- MR Author ID: 630044
- ORCID: 0000-0003-2863-6724
- Email: krilcath@isu.edu
- Received by editor(s): December 1, 1997
- Published electronically: February 10, 1999
- Additional Notes: Supported by an NSF Graduate Research Fellowship and an Alfred P. Sloan Doctoral Dissertation Fellowship
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**351**(1999), 4411-4428 - MSC (1991): Primary 16G99
- DOI: https://doi.org/10.1090/S0002-9947-99-02308-9
- MathSciNet review: 1603914